Edaphic properties as key drivers for woody species distributions in tropical savannic and forest habitats

2019 ◽  
Vol 67 (1) ◽  
pp. 70
Author(s):  
P. M. S. Rodrigues ◽  
J. O. Silva ◽  
C. E. G. R. Schaefer

Edaphic gradients can explain plant species distribution at a local scale in the neotropics and elsewhere, but few studies have evaluated the individual responses of species to such gradients. We collected data on species and soils in open savannic and forest formations (totalling five habitats in each formation), aiming to evaluate the importance of edaphic factors on the distribution of woody plant species in tropical habitats. Logistic regression was used to test the influence of predictor variables (soil texture and fertility) on plant occurrence (presence or absence). Most species (73%) responded to the edaphic gradients. However, the edaphic gradients did not explain the distribution of the remaining 27% of species, which implies the existence of other factors determining their occurrence. Soil fertility (nutritional status) was the major factor in forest habitats (65% of the species which showed significant response), while soil texture was the most explanatory factor for species occurrence in open habitats (55% of the species that showed a significant response). Thus, nutrient status was less limiting and soil texture was more limiting in savannic formations, whereas the opposite was observed for forest formations. Most species showing a relationship with edaphic gradients had a unimodal response, which is in accordance with the literature. Our study showed that soil properties largely regulate the distribution of plant species in tropical habitats, despite other factors not investigated here also having an effect on several of the studied species. Models of species distribution that take into account environmental heterogeneity are key for the elaboration of strategies for the conservation and restoration of ecosystems.

Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


Wetlands ◽  
2014 ◽  
Vol 34 (5) ◽  
pp. 927-942 ◽  
Author(s):  
Michael Murray-Hudson ◽  
Piotr Wolski ◽  
Frances Murray-Hudson ◽  
Mark T. Brown ◽  
Keotshephile Kashe

Plant Ecology ◽  
2008 ◽  
Vol 200 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Christian Schöb ◽  
Peter M. Kammer ◽  
Philippe Choler ◽  
Heinz Veit

2019 ◽  
Vol 43 (4) ◽  
pp. 273-283
Author(s):  
Xiao-Tong LIU ◽  
Quan YUAN ◽  
Jian NI ◽  

Author(s):  
Samson Shimelse Jemaneh

This study was conducted with the objectives of study investigates, compare, and try to describe the floristic composition and structure of the vegetation of exclosures and open grazing lands. A stratified preferential sampling design technique with flexible systematic model was used for data collection. Data on vegetation and environmental parameters were gathered from 120 quadrants (90 from restorations or exclosures of different ages and 30 from adjacent open grazing lands), of 20 m x 20 m (400 m2) size. Species richness and the presence or absence of herbaceous plants were recorded like soil samples in a 2 m x 2 m (4 m2) subplot inside each main quadrant from five points, one at each corner and one at the center.  A total of 142 plant species belonging to 118 genera and 52 families were identified. All exclosures displayed higher plant species richness, diversity, and aboveground standing biomass compared to the adjacent open grazing lands. Consideration of edaphic (e.g. soil total nitrogen, available phosphorus, CEC, exchangeable bases, soil pH and soil texture) and site (e.g. Stoniness, Grazing) variables will help to optimize the selection of areas for the establishment of future exclosures. Moreover, our study suggests that with time exclosures may increasingly obtain an important role as refugees and species pool similar to church forests and should be protected and managed in a sustainable manner. However, economic and social impacts of exclosures should be included in feasibility studies before establishing exclosures in the future.  Altitude, Grazing and some soil parameters like Mg were the major environmental factors in the division of the vegetation into plant community types. The result of the frequency distribution of woody species showed a high proportion of small-sized individuals in the lower diameter classes indicating good recruitment potential of the forest patches and the rare occurrence of large individuals. Such trend was probably caused by past disturbance of the original vegetation resulting in a succession of secondary vegetation. In addition, the analysis of species population structure indicated that some tree species had abnormal population structure with no or few individuals at lower size classes. Moreover, assessment of regeneration status on the basis of age classes indicated that significant proportion of woody species were represented by few or no seedlings, entailing that they were under threat. Substantial numbers of forest species were found to have irregular population structure and are in reduced regeneration status. To prevent local extinction of these species, present efforts of nursery establishment and plantation of indigenous species in the exclosures should be strengthened and extended.


Ecohydrology ◽  
2010 ◽  
Vol 4 (6) ◽  
pp. 744-756 ◽  
Author(s):  
Xiaomei Fan ◽  
Bas Pedroli ◽  
Gaohuan Liu ◽  
Hongguang Liu ◽  
Chuangye Song ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 237-250 ◽  
Author(s):  
Maxime Lenormand ◽  
Guillaume Papuga ◽  
Olivier Argagnon ◽  
Maxence Soubeyrand ◽  
Guilhem De Barros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document