Long-Term Biomass Dynamics in an Arid Chenopod Shrub Community at Koonamore, South Australia

1977 ◽  
Vol 25 (6) ◽  
pp. 639 ◽  
Author(s):  
IR Noble

A method for estimating biomass from long-term, non-rigorously controlled photo-points was developed. The method was used to investigate the changes in biomass, from 1926 to 1972, of several important forage species on the Koonamore Vegetation Reserve, South Australia. The changes in biomass are correlated with the rainfall. The biomass dynamics of all the species studied tend to be dominated by large input pulses followed by a slow decline in biomass. The average above-ground biomass and productivity for the community studied is c. 90 gm-2 and 30 gm-2 yr-1 respectively, the major part being due to short-lived plants. Interactions between the short-lived plants and shrubs, and their importance to the grazing industry are discussed.

2015 ◽  
Vol 34 (2) ◽  
pp. 137-146
Author(s):  
Saulius Marcinkonis ◽  
Birutė Karpavičienė ◽  
Michael A. Fullen

AbstractThe aim of the present study is to evaluate the long-term effects of long-term piggery effluent application on semi-natural grassland ecotop-phytotop changes (above- and below-ground phytomass production, and carbon and nitrogen allocation in grassland communities) in relation to changes (or variability) in topsoil properties. Analysis of phytomass distribution in piggery effluent irrigated grassland communities showed that dry biomass yield varied from 1.7−5.3 t ha-1. Variability in soil and plant cover created a unique and highly unpredictable site specific system, where long-term anthropogenic influences established successor communities with specific characteristics of above- and below-ground biomass distribution. These characteristics depend more on grassland communities than on soil chemical properties. Families of grasses (Poaceae) dominated the surveyed communities and accumulated most carbon and least nitrogen, while legumes accumulated most nitrogen and lignin and least carbon. Carbon concentrations in above-ground biomass had minor variations, while accumulation of nitrogen was strongly influenced by species diversity (r = 0.94, n = 10, p <0.001) and production of above-ground biomass


2011 ◽  
Vol 57 (No. 11) ◽  
pp. 505-512 ◽  
Author(s):  
X. Liu ◽  
W. Zhang ◽  
Z. Liu ◽  
F. Qu ◽  
X. Tang

In order to restore the impaired forest ecosystem in China, great efforts including the banning of the animal grazing and cutting woods for fuel, and implementation of the &lsquo;Grain for Green&rsquo; program have been made by the central and local government of China. The objective of this research was to investigate the changes in above-ground biomass and species diversity after 22 years of vegetation recovery efforts in the lower Taihang Mountain of China. The results indicated that over the natural restoration process shrubs became the dominant species in 2008, while herbs were the dominant species back in 1986. Community coverage, height and above-ground biomass showed significant increases in 2008 compared to 1986. Shrubs showed significant increases in coverage, height, and above-ground biomass, whereas herbs significantly increased in height, but decreased in above-ground biomass. Over the 22-year natural restoration process, the species richness index and the Shannon-Wiener&rsquo;s index had been significantly decreased, whereas the Simpson&rsquo;s predominance index and the Pielou&rsquo;s evenness index had been significantly increased. Long-term vegetation recovery efforts improved the impaired forest ecosystem in lower Taihang Mountain to some extent: significant increases in both community coverage and above-ground biomass. The significant increase in community coverage can reduce the soil loss by wind and water erosion, and increase in the above-ground biomass will improve the soil chemical properties and physical structure. A comprehensive assessment of the success of vegetation recovery should include the evaluation of the changes in ecological process such as soil biological activities in the future research.


2010 ◽  
Vol 259 (3) ◽  
pp. 367-373 ◽  
Author(s):  
Lucas Mazzei ◽  
Plinio Sist ◽  
Ademir Ruschel ◽  
Francis E. Putz ◽  
Phidias Marco ◽  
...  

2014 ◽  
Vol 94 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Maja Krzic ◽  
Sarah F. Lamagna ◽  
Reg F. Newman ◽  
Gary Bradfield ◽  
Brian M. Wallace

Krzic, M., Lamagna, S. F., Newman, R. F., Bradfield, G. and Wallace, B. M. 2014. Long-term grazing effects on rough fescue grassland soils in southern British Columbia. Can. J. Soil Sci. 94: 337–345. Rough fescue (Festuca campestris Rydb.) is a highly palatable forage species with little resistance to continuous grazing. The objective of this study was to evaluate the effects of long-term cattle grazing on soil properties, above-ground biomass, and canopy cover of key grass species on rough fescue grasslands in the southern interior British Columbia. Soil and vegetation properties were determined on a total of six open grassland sites located at the Lac du Bois and Hamilton Mountain. At all sites, grazing use has decreased over time, with the heaviest grazing occurring prior to 1960. The long-term (25–75 yr) elimination of grazing on these semi-arid grasslands has led to greater above-ground biomass and canopy cover of rough fescue, as well as increased soil polysaccharides; however, no differences in total soil C, N, and aggregate stability were found between pastures with and without grazing. Both soil bulk density and mechanical resistance were greater on grazed plots compared with those without grazing, with differences being more pronounced at the Hamilton Mountain location. The current grazing regime has not allowed for the elimination of negative effects of overgrazing on soil compaction on these rough fescue grasslands, especially at the location that continued to be grazed more heavily (i.e., Hamilton Mountain). Our findings suggest that soils in these grazing-sensitive grasslands need more than 75 yr to fully recover from the impacts of overgrazing.


2009 ◽  
Vol 60 (3) ◽  
pp. 240 ◽  
Author(s):  
P. Garofalo ◽  
E. Di Paolo ◽  
M. Rinaldi

The aim of this work was to apply the CropSyst simulation model to evaluate the effect of faba bean cultivation as a break crop in the continuous durum wheat cropping system in southern Italy. The model was previously calibrated and validated for durum wheat and faba bean on data derived from experiments carried out in southern Italy (for different years and treatments), comparing observed and simulated crop growth, yield, soil water, and nitrogen output variables. The validation showed good agreement between simulated and observed values for cumulative above-ground biomass, green area index, and soil water content for both crops and grain yield for durum wheat; a negative correlation for grain yield in faba bean was observed due to a reduction in harvest index in the well-watered crop, which the model does not simulate well. Subsequently, a long-term analysis was carried out to study the effects on durum wheat of introducing a legume crop in rotation with the cereal in 2 and 3-year sequences. A long-term simulation, based on 53 years of daily measured weather data, showed that faba bean, due to a lower level of transpirated water (on average 247 mm for durum wheat and 197 mm for faba bean), allowed for greater soil water availability at durum wheat sowing for the cereal when in rotation with a legume crop (on average, +84 mm/m for durum wheat following the faba bean), with positive effects for nitrogen uptake, above-ground biomass, and grain yield of wheat. The yield increase of wheat when following a faba bean crop was on average +12%, but this effect was amplified in drier years (up to 135%). In conclusion, the case study offered the potential to confirm the positive results previously obtained in long/medium-term field experiments on the introduction of faba bean in rotation with durum wheat, as well as reduction in the chemical application of nitrogen.


Plant Ecology ◽  
2014 ◽  
Vol 215 (10) ◽  
pp. 1081-1097 ◽  
Author(s):  
Milena Niño ◽  
Kurt P. McLaren ◽  
Henrik Meilby ◽  
Mathieu Lévesque ◽  
Byron Wilson ◽  
...  

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AFSHAN ANJUM BABA ◽  
SYED NASEEM UL-ZAFAR GEELANI ◽  
ISHRAT SALEEM ◽  
MOHIT HUSAIN ◽  
PERVEZ AHMAD KHAN ◽  
...  

The plant biomass for protected areas was maximum in summer (1221.56 g/m2) and minimum in winter (290.62 g/m2) as against grazed areas having maximum value 590.81 g/m2 in autumn and minimum 183.75 g/m2 in winter. Study revealed that at Protected site (Kanidajan) the above ground biomass ranged was from a minimum (1.11 t ha-1) in the spring season to a maximum (4.58 t ha-1) in the summer season while at Grazed site (Yousmarag), the aboveground biomass varied from a minimum (0.54 t ha-1) in the spring season to a maximum of 1.48 t ha-1 in summer seasonandat Seed sown site (Badipora), the lowest value of aboveground biomass obtained was 4.46 t ha-1 in spring while as the highest (7.98 t ha-1) was obtained in summer.


Sign in / Sign up

Export Citation Format

Share Document