Mercury(II) and Lead(II) Complexes of 1-Oxa-7-thia-4,10-diazacyclododecane ([12]aneN2OS)

1999 ◽  
Vol 52 (1) ◽  
pp. 1 ◽  
Author(s):  
Trevor W. Hambley ◽  
Shahara Afshar ◽  
Sebastian T. Marcus ◽  
Lawrence R. Gahan

The mixed donor 12-membered macrocyclic ligand 1-oxa-7-thia-4,10-diazacyclododecane ([12]aneN2OS) has been synthesized and the mercury(II) and lead(II) complexes, [Hg([12]aneN2OS)(NO3)2] and [Pb([12]aneN2OS)(NO3)2], have been isolated and characterized by X-ray crystallography. Crystals of the mercury complex are monoclinic, space group P 21/c, a 9·576(2), b 10·757(2), c 14·789(4) Å, β 93·58(2)°, whilst crystals of the lead complex are monoclinic, space group P 21/n, a 19·490(7), b 8·010(2), c 19·576(6) Å, β 109·90(2)°. The protonation constants and stability constants have been determined potentiometrically in aqueous solution. The protonation constants for [12]aneN2OS (log KHL 9·13; log K H2L 6·85) appear typical for secondary amines in similar trans-substituted 12-membered macrocycles. The magnitudes of the stability constants (HgII, log KHgL 10·5; PbII, log KPbL 6·6) are consistent with trends observed previously for macrocyclic ligands as secondary amine donors are replaced with oxygen and thioether donors.

1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.


Author(s):  
Marcin Rojkiewicz ◽  
Piotr Kuś ◽  
Maria Książek ◽  
Joachim Kusz

Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride (1, C17H26NO+·Cl−, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride (2; C16H24NO+·Cl−, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride (3; C13H20NO+·Cl−, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1–3.


1994 ◽  
Vol 47 (10) ◽  
pp. 1885 ◽  
Author(s):  
NF Curtis ◽  
AR Davis ◽  
FWB Einstein

Intermediate products have been isolated from the reaction of (4,4,9,9-tetramethyl-5,8-diazadodecane-2,11-dione dihydrazone )nickel(II) perchlorate with butane-2,3-dione which finally yields the macrocyclic product (3,4,7,9,9,14,14,16-octamethyl-1,2,5,6,10,13-hexaazacyclohexa-deca-2,4,6,16-tetraene)nickel(II) perchlorate , [Ni( omht )] (ClO4)2. An initial violet product is assigned a structure with the macrocyclic ligand 3-acetyl-3,6,8,8,13,13,15-heptamethyl-1,2,4,5,9,12-hexaazacyclopentadeca-5,15-diene. In water this converts into an equilibrium mixture of the tautomeric cations blue cis-aqua(3,4,7,9,9,14,14,16-octamethyl-1,2,5,6,10,13-hexaazacyclohexadeca-1(16),4,6-trien-3-ol)nickel(II), cis-[Ni(L2)(H2O)]2+, and orange (3,6,8,- 8,13,13-hexamethyl-4,5,9,12-tetraazahexadeca-3,5-diene-2,15-dione 15-hydrazone)nickel(II), [Ni(L3)]2+. The rates at 25°C of the forward and reverse reactions of this tautomerism, and of the slower conversion of the equilibrium mixture to [Ni( omht )](ClO4)2, are reported. The structure of cis -[Ni(L2)(H2O)](ClO4)2.3H2O has been determined by X-ray diffractometry (monoclinic, space group P21/n, a 9.694(8), b 19.218(14), c 16.652(9) Ǻ, β 94.88(1)°, R 0.079 for 3254 reflections). This has NiII in octahedral coordination by secondary amine nitrogen atoms 10 and 13, hydrazone nitrogen atoms 1 and 6, and the carbinolamine oxygen substituent at position 3 of the pentadentate macrocyclic ligand L2, with a water molecule coordinated cis to the hydroxy group. Compounds of the tautomeric cations [Ni(L2)]2+ and [Ni(L3)]2+ with coordinated thiocyanate, azide, nitrite, oxalate and acetate are described.


1993 ◽  
Vol 71 (7) ◽  
pp. 1086-1093 ◽  
Author(s):  
Liqin Chen ◽  
Laurence K. Thompson ◽  
John N. Bridson

The preparation and properties of the thioether–pyridazine macrocycle (L4; C16H20S6N4) containing two pyridazine subunits, and its Cu(II), Cu(II)Cu(I), and Cu(I) complexes are described. The ligand is characterized by 1H nuclear magnetic resonance and mass spectrometry, and the complexes by infrared, eleetronic spectra, and magnetism, and in some cases by X-ray crystallography. The complex [Cu2(L4)Cl4]x, (1) crystallized in the triclinic system, space group [Formula: see text] with a = 8.6204(8) Å, b = 9.850(1) Å, c = 8.348(1) Å, α = 111.46(1)°, β = 102.50(1)°, γ = 71.818(9)°, V = 622.6(1) Å3, and Z = 1 (R = 0.043, Rw = 0.042 for 1312 reflections). Two monodentate pyridazine rings in the same ligand bind to one trans square-planar copper centre (CuN2Cl2) with two sulfurs from each ligand binding to another trans square-planar copper centre (CuS2Cl2) to form a polynuclear chain. The complex [Cu(L4)Cl2] (3) crystallized in the triclinic system, space group [Formula: see text] with a = 11.001(1) Å, b = 12.888(2) Å, c = 8.704(1) Å, α = 102.89(1)°, β = 103.36(1)°,γ = 75.84(1)°, V = 1145.8(3) Å3 and Z = 2 (R = 0.056, Rw = 0.044 for 2059 reflections). A trans square-planar structure (CuN2Cl2) exists for 3 with monodentate pyridazines. [Cu(L4)(NO3)2] (4) crystallized in the orthorhombic system, space group P212121, with a = 15.148(2) Å, b = 15.562(3) Å, c = 11.064(1) Å, V = 2608.2(7) Å3 and Z = 4 (R = 0.039, Rw = 0.034 for 1864 reflections). Two monodentate pyridazine rings and two bidentate nitrates bind to a pseudo-octahedral copper(II) centre.


1989 ◽  
Vol 67 (11) ◽  
pp. 1687-1692 ◽  
Author(s):  
James P. Johnson ◽  
Gregory K. MacLean ◽  
Jack Passmore ◽  
Peter S. White

The crystal structure of Te(N3)3SbF6 containing the first binary tellurium–nitrogen cation, triazidotellurium(IV) (Te(N3)3+), has been determined by X-ray crystallography. Single crystals of Te(N3)3SbF6 are monoclinic, space group P21/c with a = 9.201(6), b = 8.445(4), c = 13.582(7) Å, β = 100.36(5)°, Z = 4, final R1 = 0.036 for 1286 observed reflections. The structure consists of discrete Te(N3)3+ cations and distorted octahedral SbF6− anions, with some cation–anion interactions. The average Te—Nα—Nβ—Nγ bond distances in Te(N3)3+ are Te—Nα, 1.994(7); Nα—Nβ, 1.237(11); and Nβ—Nγ, 1.116(12) Å. The average bond angles about the Te, Nα, and Nβ atoms are 94.1(3)°, 116.5(6)°, and 173.7(9)°. Structural correlations with other TeX3+ species have yielded an estimate of the electronegativity of the N3− group to be 3.1 ± 0.1. Keywords: tetratellurium (2+) cation, triazidotellurium(IV) cation, electronegativity, azide.


1992 ◽  
Vol 70 (3) ◽  
pp. 792-801 ◽  
Author(s):  
Jagadese J. Vittal ◽  
Philip A. W. Dean ◽  
Nicholas C. Payne

The structures of three tetramethylammonium salts containing anions of formula [(μ-SePh)6(MSePh)4]2− (M = Zn and Cd) were determined by single crystal X-ray diffraction techniques. The Zn salt crystallizes in different space groups depending upon the solvent combination used in the synthesis. Thus crystals of (Me4N)2[Zn4(SePh)10], 1, grown from a mixture of methanol, acetonitrile, and acetone are triclinic, space group [Formula: see text] with cell dimensions a = 13.214(2), b = 23.859(2), c = 13.072(1) Å, α = 91.134(8), β = 113.350(8), γ = 79.865(9)°, and Z = 2. In the absence of acetone, a solvated crystal (Me4N)2[Zn4(SePh)10]•CH3CN, 2, is formed, which belongs to the monoclinic space group P21/n with a = 14.248(1), b = 39.722(2), c = 13.408(1) Å, β = 97.132(5)°, and Z = 4. The Cd salt (Me4N)2[Cd4(SePh)10], 3, crystallizes in the monoclinic space group P21/c, with a = 20.830(2), b = 14.282(1), c = 25.872(1) Å, β = 99.626(6)°, and Z = 4. These three salts are the first examples of homoleptic, tetranuclear selenolatometal(II) anions with (μ-Se)6M4 cages of adamantane-type stereochemistry. In each case the phenyl substituents of the bridging ligands adopt the configuration [aae, aae, aee, aee], which has the minimum number of two 1,3-axial–axial non-bonding substituent interactions. Keywords: selenolate complexes, synthesis, X-ray crystallography, isomerism, adamantane stereochemistry.


2001 ◽  
Vol 56 (8) ◽  
pp. 759-764 ◽  
Author(s):  
Soheila Chitsaz ◽  
Effat Iravani ◽  
Jochen Pauls ◽  
Bernhard Neumüller

[(THF)2LiCl2VCl2(THF)2] (1) and [Li(THF)4][OMoCl4(THF)] (2) can be prepared by the reactions of VCI3 with LiCl in THF and of Li(H)PtBu with OM0 CI4 in THF, respectively. 1 and 2 were characterized by IR spectroscopy, MS spectrometry (2) and X-ray crystallography. 1 can be obtained in two modifications depending on the temperature of crystallization. At -30 °C a triclinic form, 1a, was isolated from THF solution with one unique molecule per asymmetric unit. However, at 20 °C, 1b crystallized in the monoclinic space group P2/c. It possesses four independent molecules per asymmetric unit. According to the structure analyses 1 consists of a dinuclear complex with a planar LiCl2V four-membered ring while 2 consists of seperate ions [Li(THF)4]+ and [OMoCl4(THF)]-


2014 ◽  
Vol 69 (7) ◽  
pp. 799-803 ◽  
Author(s):  
Kiran Gupta ◽  
Peter Mayer ◽  
Ashutosh Pandey

1A[Al(OiPr)3]4 was reacted at ambient temperature with 3-chloropentanedione (3-ClacacH) in 1 : 1 molar ratio in toluene, to obtain the mono-substituted product. However, the bis-substituted dinuclear tetrakis(3-chloropentanedionato)-di-m-isopropoxy-dialuminum(III) [Al(μ-OiPr)(3-Clacac)2]2 () was isolated in 46% yield upon aging of the reaction mixture at −10 °C. The supernatant upon aging yielded a crop of tris-3-chloroacetylacetonate Al(3-Clacac)3·H2O (1) in 13% yield. Complexes 1A (monoclinic, space group P21/c with Z = 2) and 1(cubic, space group P43n with Z = 8) were characterized by elemental analyses, NMR and IR spectroscopy and single-crystal X-ray crystallography.


Author(s):  
Moussa Faye ◽  
Papa Aly Gaye ◽  
Mouhamadou Moustapha Sow ◽  
Moussa Dieng ◽  
Farba Bouyagui Tamboura ◽  
...  

The use of N'–(1–(pyridin–2–yl)ethylidene)nicotinohydrazide (HL) in lanthanide(III) chemistry has yielded one mononuclear and one dinuclear complexes. The 1:1 Nd(NO3)3.6H2O or Pr(CH3COO)3.6H2O/HL in methanol afforded the complexes [Nd (HL)2(NO3)2(H2O)2].(NO3) (1) and {[Pr(L)(h2–OOCCH3)(H2O)](h1:h2:m–OOCCH3)2[Pr (L)(h2–OOCCH3)(H2O)]} (2). The structures of the complexes were solved by single crystal X–ray crystallography. In the mononuclear complex, the Nd3+ atom is coordinated by two neutral molecules of ligand acting in tridentate fashion, two nitrate anions acting in bidentate manner and two coordinated water molecules yielding a twelve–coordinated Nd atom. In the complex (2) the Pr3+ atoms are doubly bridged by two acetates anions and each metal ion is coordinated by one tridentate monodeprotonated molecule ligand, one bidentate acetate group and one coordinated water molecule. Each Pr3+ atom is nine–coordinated with an environment best described as a tricapped prismatic geometry. Complex 1 crystallizes in the monoclinic space group C2/c with the following parameters: a = 22.7657(8) Å, b = 8.4276(3) Å, c = 18.0831(7) Å, b = 114.851(2)°, V = 3148.2(2) Å3, Z = 4, R1 = 0.032, wR2 = 0.098. Complex 2 crystallizes in the monoclinic space group P21/n with the following parameters: a = 11.5388(6) Å, b = 14.1087(8) Å, c = 12.2833(6) Å, b = 102.211(2)°, V = 1954.45(18) Å3, Z = 2, R1 = 0.029, wR2 = 0.066. The supramolecular structures are consolidated by multiple hydrogen bonds.


1988 ◽  
Vol 66 (9) ◽  
pp. 2367-2374 ◽  
Author(s):  
Ramesh Kapoor ◽  
Poonam Wadhawan ◽  
Pratibha Kapoor ◽  
Jeffery F. Sawyer

The compounds seleninyl bis(trifluoromethanesulphonate) (1) and seleninyl bis(acetate) (2) have been prepared and characterized by elemental analysis, ir and Raman spectroscopy, and X-ray crystallography. Crystals of 1 are monoclinic, space group P21/n with a = 12.735(1) Å, b = 5.163(4) Å, c = 16.133(2) Å, β = 96.426(8)°, U = 1054 Å3, Dx = 2.48 g cm−3 for Z = 4, R = 0.038 for 1745 observed reflections with I > 2.5σ(I). Those of 2 are orthorhombic, space group Pcab with a = 6,845(3) Å, b = 8.992(2) Å, c = 23.560(9) Å, U = 1450 Å3Dx = 1.95 g cm−3 for Z = 8, R = 0.074 for 1073 observed reflections with I > 3.0σ(I). The primary geometry of the Se atom in SeO(O3SCF3)2 is AX3E with a Se=O distance of 1.571(3) Å and Se—O bond lengths to the CF3SO3 ligands of 1.902(3) and 1.922(3) Å. Completing the overall coordination geometry of the Se atom are 2 intramolecular and 4 intermolecular Se … O contacts which are less than van der Waals limits. The overall coordination geometry is somewhat irregular since the two triflate anions are significantly differently arranged with respect to the SeO3E tetrahedron. The crystal packing consists of layers of interacting molecules. In 2 there is some disorder. However, the major arrangement of the molecule has Se=O and Se—O(1), Se—O(3) distances to the acetate ligands of lengths 1.575(9), 1.847(7), and 1.831(8) Å respectively. The overall geometry of the Se atom in this compound is completed by two intramolecular secondary Se … O contacts involving the second O atoms of both acetates and two intermolecular contacts involving the seleninyl oxygen atom and atom O(2) of an acetate group in two different symmetry related molecules. Overall, the crystal packing consists of essentially centrosymmetric dimeric units linked together through Se=O—Se bridges. A 1:2 adduct of 1 with pyridine has also been prepared and characterised.


Sign in / Sign up

Export Citation Format

Share Document