High-Temperature Structural Studies of SrPbO3 and BaPbO3

2002 ◽  
Vol 55 (8) ◽  
pp. 543 ◽  
Author(s):  
J. R. Hester ◽  
C. J. Howard ◽  
B. J. Kennedy ◽  
R. Macquart

High-resolution X-ray powder diffraction studies have shown BaPbO3 to transform from an orthorhombic Imma structure at room temperature, through an intermediate I4/mcm phase, to a cubic Pm3–mstructure above 500�C. The Imma to I4/mcm transition is first order and the I4/mcm–Pm3–m transition for BaPbO3 is tricritical in nature. We find no evidence for any phase transitions in SrPbO3 up to 760�C, the structure remaining in Pnma from room temperature to 760�C.

2008 ◽  
Vol 23 (S1) ◽  
pp. S70-S74 ◽  
Author(s):  
L. M. Acuña ◽  
R. O. Fuentes ◽  
D. G. Lamas ◽  
I. O. Fábregas ◽  
N. E. Walsöe de Reca ◽  
...  

Crystal structure of compositionally homogeneous, nanocrystalline ZrO2–CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2. ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t′-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t′-to-t″ followed by t″-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t″-form, transforms directly to the cubic phase. The results suggest that t′-to-t″ transition is of first order, but t″-to-cubic seems to be of second order.


1991 ◽  
Vol 46 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Surendra Sharma ◽  
Norbert Weiden ◽  
Alarich Weiss

Abstract The phase transitions in CsSnCl3 and CsPbBr3 have been studied by X-ray powder diffraction, by 81Br-NQR and by 'H-, 119Sn-, and 113Cs-NMR. At room temperature in air CsSnCl3 forms a hydrate which can be dehydrated to the monoclinic phase II of CsSnCl3. The high temperature phase I has the Perovskite structure, as the X-ray and NMR experiments show. The three phases of CsPbBr3, known from literature, have been corroborated. The results are discussed in the framework of the group ABX3, A = alkalimetal ion, B = IV main group ion, and X = Halogen ion


Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


2007 ◽  
Vol 40 (6) ◽  
pp. 999-1007 ◽  
Author(s):  
Ángeles G. De la Torre ◽  
Khadija Morsli ◽  
Mohammed Zahir ◽  
Miguel A.G. Aranda

The clinkerization processes to form belite clinkers, with theoretical compositions close to 60 wt% of Ca2SiO4, have been studiedin situby high-resolution high-energy (λ = 0.30 Å) synchrotron X-ray powder diffraction. In order to obtain active belite cements, different amounts of K2O, Na2O and SO3have been added. The existence range of the high-temperature phases has been established and, furthermore, Rietveld quantitative phase analyses at high temperature have been performed for all patterns. The following high-temperature reactions have been investigated: (i) polymorphic transformations of dicalcium silicate, \alpha_{\rm L}'-Ca2SiO4↔ \alpha_{\rm H}'-Ca2SiO4from 1170 to 1230 K, and \alpha_{\rm H}'-Ca2SiO4↔ α-Ca2SiO4from 1500 to 1600 K; (ii) melting of the aluminates phases, Ca3Al2O6and Ca4(Al2Fe2)O10, above ∼1570 K; and (iii) reaction of Ca2SiO4with CaO to yield Ca3SiO5above ∼1550 K. Moreover, in all the studied compositions the temperature of the polymorphic transformation \alpha_{\rm H}'-Ca2SiO4↔ α-Ca2SiO4has decreased with the addition of activators. Finally, active belite clinkers were produced as the final samples contained α-belite phases.


2009 ◽  
Vol 79 (6) ◽  
Author(s):  
F. Yokaichiya ◽  
A. Krimmel ◽  
V. Tsurkan ◽  
I. Margiolaki ◽  
P. Thompson ◽  
...  

2001 ◽  
Vol 16 (4) ◽  
pp. 205-211 ◽  
Author(s):  
S. N. Tripathi ◽  
R. Mishra ◽  
M. D. Mathews ◽  
P. N. Namboodiri

X-ray powder diffraction investigation of the new high temperature polymorphs beta- and gamma-CaTeO3 and gamma- and delta-CaTe2O5 and picnometric measurements of the room temperature phases of the two compounds have been carried out. The study led to the elucidation of their unit cell structures and assignment of entirely new lattice types and parameters to the room temperature phases of CaTeO3 and CaTe2O5 in contrast and supersession to the existing structural information. The results are as follows: CaTeO3 has only one stable phase at room temperature and temperatures up to 882 °C, i.e., α- and has a triclinic unit cell with a=4.132±0.003 Å, b=6.120±0.006 Å, c=12.836±0.013 Å, α=121.80°, β=99.72°, γ=97.26°. The first high temperature phase stable between 882 and 894 °C, i.e., β-CaTeO3, has a monoclinic lattice: a=20.577±0.007 Å, b=21.857±0.009 Å, c=4.111±0.002 Å, β=96.15°, while the next phase stable above 894 °C, i.e., γ-CaTeO3, has a hexagonal unit cell with parameters: a=14.015±0.0001 Å, c=9.783±0.001 Å, c/a=0.698. CaTe2O5 has one stable phase at temperatures up to 802 °C, i.e., α-CaTe2O5 with a monoclinic lattice and parameters: a=9.069±0.002 Å, b=25.175±0.007 Å, c=3.366±0.001 Å, β=98.29 °. The first high temperature phase stable in the range 802–845°, i.e., β-CaTe2O5, is monoclinic with unit cell parameters: a=4.146±0.001 Å, b=5.334±0.002 Å, c=6.105±0.002 Å, β=98.362 °; the next higher temperature phase stable over 845–857 °C, i.e., γ-CaTe2O5, has an orthorhombic unit cell with: a=8.638±0.001 Å, b=9.291±0.001 Å, c=7.862±0.001 Å and the highest temperature solid phase stable above 857 °C, i.e., δ-CaTe2O5 has a tetragonal unit cell with a=5.764±0.000 Å, c=32.074±0.020 Å, c/a=5.5637.


1992 ◽  
Vol 7 (4) ◽  
pp. 226-227 ◽  
Author(s):  
Fu Zhengmin ◽  
Li Wenxiu

AbstractThe crystal structure of the high-temperature phase of Sr2ZnWO6 prepared by air quenching from 1200° C has been determined by means of X-ray powder diffraction. β-Sr2ZnWO6 belongs to the cubic system, with space group Fm3m and a lattice parameter a = 7.9266 Å at room temperature. Its measured density is Dm = 6.93g/cm3, and each unit cell contains four formula weights.


1989 ◽  
Vol 22 (2) ◽  
pp. 105-109 ◽  
Author(s):  
M. S. Somayazulu ◽  
V. K. Wadhawan

TlNO3 is a ferroelastic crystal belonging to the orthorhombic Aizu species m3mFmmm(ss) at room temperature. Lattice-parameter measurements by X-ray powder diffraction at various temperatures are reported for this crystal. Spontaneous-strain components are calculated from the lattice parameters. The spontaneous strain has a large magnitude of 7.80 x 10−2 at room temperature. Its two components are found to be rather insensitive to change of temperature. This may be due in part to the improper nature of this ferroelastic. Anomalies indicating either new isomorphous phase transitions or crossover behaviour are observed at 309, 329 and 399 K. Between 352 and 416 K the crystal belongs to the rhombohedral Aizu species m3mF3. The critical exponent of the spontaneous strain for the rhombohedral phase is found to change from 0.72 (3) to 0.60 (5) at 399 K.


Sign in / Sign up

Export Citation Format

Share Document