Tuning Second-Order Non-linear (NLO) Optical Response of Organoimido-Substituted Hexamolybdates through Halogens: Quantum Design of Novel Organic-Inorganic Hybrid NLO Materials

2010 ◽  
Vol 63 (5) ◽  
pp. 836 ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua ◽  
Zhong-Min Su ◽  
Wei Guan ◽  
Chun-Guang Liu ◽  
Li-Kai Yan ◽  
...  

The second-order non-linear optical (NLO) response of organoimido-substituted hexamolybdates has been tuned from 218.61 × 10–30 to 490.10 × 10–30 esu. The dipole polarizabilities and second-order nonlinear optical (NLO) properties of organoimido derivatives of hexamolybdates have been investigated by using the time-dependent density functional response theory (TDDFT). The electron withdrawing ability of F (fluorine) has played an important role in tuning the second-order NLO response in this class of organic-inorganic hybrid compounds; particularly system 6 [Mo6O18(NC16H8F2(CF3)2I)]2– with the static second-order polarizability (βvec ) computed to be 490.10 × 10–30 esu. Thus, our studied systems have the feasibility to be excellent tuneable second-order NLO materials. The analysis of the major contributions to the βvec value suggests that the charge transfer (CT) from POM to organic ligand (D-A) along the z-axis has been enhanced with addition of F atoms at the end phenyl ring which directs head (POM) to tail (fluorinated ring) charge transfer. The computed βvec values have been tuned by incorporation of different halogen atoms at the end phenyl ring of organoimido segment. Furthermore, substitution of two trifluoromethyl (–CF3) groups sideways along with iodine (I) at the terminus of end phenyl ring in the organoimido ligand has a striking influence on tuning the optical non-linearity, as CT from POM to the organoimido ligand was significantly increased. These systematic small changes in molecular composition by substitution of different halogen groups leads to a tuning the NLO response; the so-called ‘ripple effect’ catches this point nicely. Thus, the present investigation provides thought provoking insight into the tuneable NLO properties of organoimido-substituted hexamolybdates.


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua Janjua

In this study, the energy gaps, second-order nonlinear optical (NLO) properties and dipole polarizabilities of triphenylamine based α-cyanocinnamic acid acetylene derivatives have been investigated via using time-dependent density functional response theory. These compounds were designed theoretically by fluorine (F) atom substitution at different positions of phenyl ring end of the α-cyanocinnamic acid segment. The results have indicated that the systems substituted by fluorine show remarkable NLO second-order response, especially D4 system with computed static second-order polarizability (βtot) of 70537.95 (a.u). Hence, these materials have the likelihood to be an excellent second-order nonlinear optical (NLO) materials. The βtot value suggests that along the x-axis the charge transfer (CT) from triphenylamine to α-cyanocinnamic acid (D-A) plays a key role in NLO response; whereas α-cyanocinnamic acid acts as an acceptor (A) and triphenylamine acts as a donor (D) in all the studied systems. Incorporation of an electron acceptor (F) at the phenyl ring end of the α-cyanocinnamic acid segment increases the computed βtot values. The present investigation therefore provides an important insight into the remarkably greater NLO properties of α-cyanocinnamic acid and triphenylamine attached via acetylene.



Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6920
Author(s):  
Mubeen Mumtaz ◽  
Nasir Rasool ◽  
Gulraiz Ahmad ◽  
Naveen Kosar ◽  
Umer Rashid

The interest in the NLO response of organic compounds is growing rapidly, due to the ease of synthesis, availability, and low loss. Here, in this study, Cu(II)-catalyzed selective N-arylation of 2-aminobenzoimidazoles derivatives were achieved in the presence of different bases Et3N/TMEDA, solvents DCM/MeOH/H2O, and various aryl boronic acids under open atmospheric conditions. Two different copper-catalyzed pathways were selected for N-arylation in the presence of active nucleophilic sites, providing a unique tool for the preparation of NLO materials, C-NH (aryl) derivatives of 2-aminobenzoimidazoles with protection and without protection of NH2 group. In addition to NMR analysis, all synthesized derivatives (1a–1f and 2a–2f) of 5-bromo 2-amino benzimidazole (1) were computed for their non-linear optical (NLO) properties and reactivity descriptor parameters. Frontier molecular orbital (FMO) analysis was performed to get information about the electronic properties and reactivity of synthesized compounds.



2015 ◽  
Vol 14 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Ting Zhang ◽  
Wei Guan ◽  
Shizheng Wen ◽  
Tengying Ma ◽  
Likai Yan ◽  
...  

The combination of cations with octahedral coordinated d0 transition metal ions has been proved to be an effective way for designing new polar materials. So we investigate the second-order nonlinear optical (NLO) properties of Strandberg-type polyoxometalates (POMs) with alkali metal cations M 6 Mo 5 X 2 O 23 ( M = K +, Rb +, Cs +; X = P , As ) and M 4 M o5 X 2 O 21 ( M = K +, Rb +, Cs +; X = S , Se , Te ) by density functional theory (DFT) method. The calculated results show that this kind of Strandberg-type POMs possesses remarkably large molecular second-order NLO polarizability, especially for the Cs 6 Mo 5 P 2 O 23 (system Ic), which has a computed β0 value of 12526 a.u. and might be an excellent second-order NLO material. Moreover, the cations have important impact on the second-order NLO polarizabilities. Therefore, a careful choice of appropriate cations may allow the control of the second-order NLO response on these Strandberg-type POMs, which may provide a new route to design efficient NLO materials.



2019 ◽  
Vol 960 ◽  
pp. 268-273
Author(s):  
Qi Li ◽  
Xiu Hua Yuan

In this study, density functional theory (DFT) was used to calculate second-order polarizabilities and second-order polarizabilities densities of a series of organic substitution for Lindqvist-type polyoxometalates (POMs), and the nonlinear optical (NLO) properties was also analyzed. We found that βzzz has the main contribution to β value. The expansion of molecular structure on z-axis greatly increased second-order polarizabilities. Both the size of the organic segments and metal hybridization exert an influence on β value. The analysis on the second-order polarizabilities density is used to explain the NLO phenomenon. In the present investigation, metal hybridization and π-conjugation changed the contribution of βzzz value from different parts. The results of this work will contribute to the potential applications in high-performance NLO materials.



2021 ◽  
Vol 8 (8) ◽  
pp. 210570
Author(s):  
Muhammad Khalid ◽  
Muhammad Usman Khan ◽  
Iqra Shafiq ◽  
Riaz Hussain ◽  
Akbar Ali ◽  
...  

A donor–π–acceptor type series of Triphenylamine–dicyanovinylene-based chromophores ( DPMN1–DPMN11 ) was designed theoretically by the structural tailoring of π-linkers of experimentally synthesized molecules DTTh and DTTz to exploit changes in the optical properties and their nonlinear optical materials (NLO) behaviour. Density functional theory (DFT) computations were employed to understand the electronic structures, absorption spectra, charge transfer phenomena and the influence of these structural modifications on NLO properties. Interestingly, all investigated chromophores exhibited lower band gap (2.22–2.60 eV) with broad absorption spectra in the visible region, reflecting the remarkable NLO response. Furthermore, natural bond orbital (NBO) findings revealed a strong push–pull mechanism in DPMN1–DPMN11 as donor and π-conjugates exhibited positive, while all acceptors showed negative values. Examination of electronic transitions from donor to acceptor moieties via π-conjugated linkers revealed greater linear (〈 α 〉 = 526.536–641.756 a.u.) and nonlinear ( β tot = 51 313.8–314 412.661 a.u.) response. It was noted that the chromophores containing imidazole in the second p-linker expressed greater hyperpolarizability when compared with the ones containing pyrrole. This study reveals that by controlling the type of π-spacers, interesting metal-free NLO materials can be designed, which can be valuable for the hi-tech NLO applications.



1997 ◽  
pp. 1131-1132 ◽  
Author(s):  
Xiao-Min Zhang ◽  
Bao-Zhen Shan ◽  
Cun-Ying Duan ◽  
Xiao-Zeng You


2019 ◽  
Author(s):  
Pralok K. Samanta ◽  
Md Mehboob Alam ◽  
Ramprasad Misra ◽  
Swapan K. Pati

Solvents play an important role in shaping the intramolecular charge transfer (ICT) properties of π-conjugated molecules, which in turn can affect their one-photon absorption (OPA) and two-photon absorption (TPA) as well as the static (hyper)polarizabilities. Here, we study the effect of solvent and donor-acceptor arrangement on linear and nonlinear optical (NLO) response properties of two novel ICT-based fluorescent sensors, one consisting of hemicyanine and dimethylaniline as electron withdrawing and donating groups (molecule 1), respectively and its boron-dipyrromethene (BODIPY, molecule 2)-fused counterpart (molecule 3). Density functional theoretical (DFT) calculations using long-range corrected CAM-B3LYP and M06-2X functionals, suitable for studying properties of ICT molecules, are employed to calculate the desired properties. The dipole moment (µ) as well as the total first hyperpolarizability (β<sub>total</sub>) of the studied molecules in the gas phase is dominantly dictated by the component in the direction of charge transfer. The ratios of vector component of first hyperpolarizability (β<sub>vec</sub>) to β<sub>total</sub> also reveal unidirectional charge transfer process. The properties of the medium significantly affect the OPA, hyperpolarizability and TPA properties of the studied molecules. Time dependent DFT (TDDFT) calculations suggest interchanging between two lowest excited states of molecule 3 from the gas phase to salvation. The direction of charge polarization and dominant transitions among molecular orbitals involved in the OPA and TPA processes are studied. The results presented are expected to be useful in tuning the NLO response of many ICT-based chromophores, especially those with BODIPY acceptors.<br>



2016 ◽  
Vol 69 (4) ◽  
pp. 467 ◽  
Author(s):  
Muhammad Ramzan Saeed Ashraf Janjua ◽  
Zain Hassan Yamani ◽  
Saba Jamil ◽  
Asif Mahmood ◽  
Imran Ahmad ◽  
...  

In this study, density functional theory and time-dependent density functional theory are used to determine how the size of π-conjugated system influences the absorption spectra and non-linear optical (NLO) properties of dyes. Double and triple bonds, as well the benzene rings, are used in conjugated systems. The results of the theoretical computation show that the absorption spectra are gradually broadened and red-shifted with increases in the conjugation length. Theoretical examination of the NLO properties was performed on the key parameters of polarizability and hyperpolarizability. A notable increase in the non-linear optical response was observed with an increase in the conjugation length of the π-spacer.



2017 ◽  
Vol 19 (3) ◽  
pp. 2557-2566 ◽  
Author(s):  
Nana Ma ◽  
Jinjin Gong ◽  
Shujun Li ◽  
Jie Zhang ◽  
Yongqing Qiu ◽  
...  

Inorganic electrides Lin@B20H26 could be NLO materials because of their better performance on the magnitude of β0 and modulation of the NLO response.



2011 ◽  
Vol 89 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Ping Song ◽  
Chunguang Liu ◽  
Wei Guan ◽  
Likai Yan ◽  
Xiaolei Sun ◽  
...  

Density functional theory (DFT) calculations were carried out to investigate the nonlinear optical (NLO) response for the donor-conjugated bridge-accepter (D–π–A) model of p-nitroaniline (PNA) – hexamolybdate derivatives and PNA–metal–carbonyl complexes. The bond length alternation (BLA) values decrease with lengthening of the π-conjugated bridge, especially for PNA–hexamolybdate derivatives, which dramatically enhances the NLO response. In addition, the introduction of Mo≡N in PNA–hexamolybdate derivatives is expected to provide a better electron transition channel, consequently generating lower BLA values and an outstanding NLO response compared with PNA–metal–carbonyl complexes. It is shown that the hexamolybdate acts as an electron donor when incorporating metal–carbonyl complexes into one molecule. All these behaviors reflect the superiority of hexamolybdate as a donor moiety in the D–π–A model for the design of potential NLO materials.



Sign in / Sign up

Export Citation Format

Share Document