Switching On/Off the Intramolecular Hydrogen Bonding of 2-Methoxyphenol Conformers: An NMR Study

2020 ◽  
Vol 73 (3) ◽  
pp. 222
Author(s):  
Frederick Backler ◽  
Feng Wang

Intramolecular hydrogen bonding of 2-methoxyphenol (2-MP, guaiacol) is studied using NMR spectroscopy combined with quantum mechanical density functional theory (DFT) calculations. The hydrogen bonding of OH⋯O and HO⋯H is switched on in the conformers of anti–syn (AS, 99.64% dominance) and anti–gauche (AG), respectively, with respect to the anti–anti (AA) conformer (without either such hydrogen bonding interactions). It confirms that the 13C and 1H NMR chemical shift of AS dominates the measured NMR spectra, as the AS conformer reproduces the measurements in CDCl3 solvent (RMSD of 1.86ppm for 13C NMR and of 0.27ppm for 1H NMR). The chemical shift of hydroxyl H(1) at 5.66 pm is identified as the fingerprint of the OH(1)⋯OCH3 hydrogen bonding in AS, as it exhibits a significant deshielding from H(1) of AA (4.24ppm) and H(1) of AG (4.38ppm) without such OH(1)⋯OCH3 hydrogen bonding. The AG conformer (C1 point group symmetry) possesses a less strong hydrogen bonding of HO⋯HCH2O, with the methoxyl group out of the aromatic phenol plane. The substituent effect of AG due to the resonance interaction of methoxyl being out of plane in a concentrated solution shifts the ortho- and para-aromatic carbons, C(3)/C(5), of the AG to ~125.05/125.44ppm from the corresponding carbons in AS at 108.81/121.60ppm. The hydrogen bonding exhibits inwards reduction of IR frequency regions of AS and AG from AA. Finally, energy decomposition analysis (EDA) indicates that there is a steric energy of 45.01kcal mol−1 between the AS and AG when different intramolecular hydrogen bonding is switched on.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3763
Author(s):  
Poul Erik Hansen

This review outlines methods to investigate the structure of natural products with emphasis on intramolecular hydrogen bonding, tautomerism and ionic structures using NMR techniques. The focus is on 1H chemical shifts, isotope effects on chemical shifts and diffusion ordered spectroscopy. In addition, density functional theory calculations are performed to support NMR results. The review demonstrates how hydrogen bonding may lead to specific structures and how chemical equilibria, as well as tautomeric equilibria and ionic structures, can be detected. All these features are important for biological activity and a prerequisite for correct docking experiments and future use as drugs.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Bo Wang ◽  
Wanrun Jiang ◽  
Xin Dai ◽  
Yang Gao ◽  
Zhigang Wang ◽  
...  

Abstract As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond’s O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems.


Sign in / Sign up

Export Citation Format

Share Document