The kinetics of the pyrolysis of Cyclohexyl chloride.

1958 ◽  
Vol 11 (3) ◽  
pp. 314 ◽  
Author(s):  
ES Swinbourne

cycloHexy1 chloride has been shown to decompose in the gas phase at 318-385 �C almost exclusively to cyclohexene and hydrogen chloride. With clean glass-walled reactors the reaction was largely heterogeneous, but after the walls were coated with a carbonaceous film a homogeneous first-order reaction was found to predominate. For initial pressures within the range 4-40 cm mercury the rate coefficients for the homogeneous reaction were expressible as������� k = 5.88 x 1013exp(-50,000 cal/RT) sec-1. There was some evidence for the rate coefficient becoming pressure-dependent below 5-10 mm initial pressure of reactant. The reaction exhibited no induction periods and the velocity was virtually unaffected by the addition of large amounts of propene or cyclohexene and traces of chlorine or bromine. The results were consistent with a unimolecular elimination of hydrogen chloride.


1993 ◽  
Vol 28 (2) ◽  
pp. 135-144 ◽  
Author(s):  
S. Matsui ◽  
R. Ikemoto Yamamoto ◽  
Y. Tsuchiya ◽  
B. Inanc

Using a fluidized bed reactor, experiments on glucose decomposition with and without sulfate reduction were conducted. Glucose in the reactor was mainly decomposed into lactate and ethanol. Lactate was mainly decomposed into propionate and acetate, while ethanol was decomposed into propionate, acetate, and hydrogen. Sulfate reduction was not involved in the decomposition of glucose, lactate, and ethanol, but was related to propionate and acetate decomposition. The stepwise reactions were modeled using either a Monod expression or first order reaction kinetics in respect to the reactions. The coefficients of the kinetic equations were determined experimentally. The modified Monod and first order reaction equations were effective at predicting concentrations of glucose, lactate, ethanol, propionate, acetate, and sulfate along the beight of the reactor. With sulfate reduction, propionate was decomposed into acetate, while without sulfate reduction, accumulation of propionate was observed in the reactor. Sulfate reduction accelerated propionate conversion into acetate by decreasing the hydrogen concentration.



1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.



1973 ◽  
Vol 28 (1-2) ◽  
pp. 83-90
Author(s):  
Horst Mossmann ◽  
Dietrich K. Hammer

The reaction of bacteriophage T4 with 1-fluoro-2,4-dinitrobenzene resulted in a covalent binding of 2,4-dinitrophenyl (DNP) determinants to the phage. From the kinetics of inactivation reflecting the coupling process it is concluded that attachment of more than one DNP group to the critical site(s) of the phage is required for inactivation (multi-hit reaction). Contrary to this the neutralization of DNP-T4 by anti-DNP antibody turned out to be a first order reaction, until 80 %> neutralization fitting one-hit kinetics. If compared with native T4, the susceptibility of DNP-T4 to neutralization by anti-T4 antibody is considerably higher, indicating that attachment of DNP groups to T4 amplifies the sensitivity to neutralization by anti-T4. Comparing neutralization kinetics of DNP-T4 and native T4 by anti-DNP-T4 antibody it is suggested that native determinants and DNP groups, as well as determinants resulting from alteration due to the coupling process, all together may contribute as targets for neutralization. Three characteristics strengthen the view that the velocity of T4 conjugates in infecting the host strain is markedly decreased if compared with that of native T4: (a) considerable discrepancy between direct plating and decision technique (b) increasing variety of plaque size and (c) decreased velocity of the first step of reproduction. The kinetics of neutralization observed can be reconciled with a model proposed by Krummel and Uhr. The kinetics of reactivation of neutralized DNP-T4 by the presence cf DNP-BSA has been investigated and the problems involved in the reaction are discussed.



2013 ◽  
Vol 78 (12) ◽  
pp. 2115-2130 ◽  
Author(s):  
Martinez Gonzalez ◽  
Tanja Vidakovic-Koch ◽  
Rafael Kuwertz ◽  
Ulrich Kunz ◽  
Thomas Turek ◽  
...  

Hydrogen chloride (HCl) oxidation has been investigated on technical membrane electrode assemblies in a cyclone flow cell. Influence of Nafion loading, temperature and hydrogen chloride mole fraction in the gas phase has been studied. The apparent kinetic parameters like reaction order with respect to HCl, Tafel slope and activation energy have been determined from polarization data. The apparent kinetic parameters suggest that the recombination of adsorbed Cl intermediate is the rate determining step.



2010 ◽  
Vol 2 (2) ◽  
pp. 107-112
Author(s):  
Nuryono Nuryono ◽  
Narsito Narsito

In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl) and sulfuric acid (H2SO4) on kinetics of Cd(II) adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size) with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II) in aqueous solution with various concentrations. The Cd(II) adsorbed was determined by analyzing the rest of Cd(II) in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II) occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I) followed by reaction of reversible first order (step II). Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated) did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol).     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.



2000 ◽  
Vol 65 (12) ◽  
pp. 857-866
Author(s):  
Mladjen Micevic ◽  
Slobodan Petrovic

The alcoholysis of 1,2,2-trimethylpropyl-methylfluorophosphonate (soman) was examined with a series of alkoxides and in corresponding alcohols: methanol, ethanol, 1-propanol, 2-propanol, 2-methoxyethanol and 2-ethoxyethanol. Soman reacts with the used alkoxides in a second order reaction, first order in each reactant. The kinetics of the reaction between 1,2,2-trimethylpropyl-methylfluorophosphonate and ethanol in the presence of diethylenetriamine was also examined. A third order reaction rate constant was calculated, first order in each reactant. The activation energy, frequency factor and activation entropy were determined on the basis of the kinetic data.



1972 ◽  
Vol 18 (3) ◽  
pp. 263-265 ◽  
Author(s):  
John A Daly ◽  
Gerhard Ertingshausen

Abstract A direct method was developed for determining inorganic phosphate in serum, which requires only a single reagent addition. The method quantitates the unreduced phosphomolybdate heteropolyacid at 340 nm and is linear to at least 10 mg of phosphate per 100 ml. Only 10 µl of serum is required. The unique blanking capabilities of centrifugal analyzers permit the "on run" elimination of serum and reagent background absorbances, which are automatically subtracted. Data on precision, correlation, and recovery are presented. Kinetics of the reaction were studied, and theoretical limits of automatic blanking when applied to a first-order reaction are discussed.



1992 ◽  
Vol 73 (5) ◽  
pp. 1939-1945 ◽  
Author(s):  
E. M. Postlethwait ◽  
S. D. Langford ◽  
A. Bidani

We previously showed, during quasi-steady-state exposures, that the rate of inhaled NO2 uptake displays reaction-mediated characteristics (J. Appl. Physiol. 68: 594–603, 1990). In vitro kinetic studies of pulmonary epithelial lining fluid (ELF) demonstrated that NO2 interfacial transfer into ELF exhibits first-order kinetics with respect to NO2, attains [NO2]-dependent rate saturation, and is aqueous substrate dependent (J. Appl. Physiol. 71: 1502–1510, 1991). We have extended these observations by evaluating the kinetics of NO2 gas phase disappearance in isolated ventilating rat lungs. Transient exposures (2–3/lung at 25 degrees C) employed rebreathing (NO2-air) from a non-compliant continuously stirred closed chamber. We observed that 1) NO2 uptake rate is independent of exposure period, 2) NO2 gas phase disappearance exhibited first-order kinetics [initial rate (r*) saturation occurred when [NO2] > 11 ppm], 3) the mean effective rate constant (k*) for NO2 gas phase disappearance ([NO2] < or = 11 ppm, tidal volume = 2.3 ml, functional residual capacity = 4 ml, ventilation frequency = 50/min) was 83 +/- 5 ml/min, 4) with [NO2] < or = 11 ppm, k* and r* were proportional to tidal volume, and 5) NO2 fractional uptakes were constant across [NO2] (< or = 11 ppm) and tidal volumes but exceeded quasi-steady-state observations. Preliminary data indicate that this divergence may be related to the inspired PCO2. These results suggest that NO2 reactive uptake within rebreathing isolated lungs follows first-order kinetics and displays initial rate saturation, similar to isolated ELF.(ABSTRACT TRUNCATED AT 250 WORDS)



1977 ◽  
Vol 55 (17) ◽  
pp. 3166-3171 ◽  
Author(s):  
Thomas Wilson Swaddle

For the aquation of (CH3NH2)5RhCl2+, the first order rate coefficients are represented by ΔHaq* = 101.9 kJ mol−1 and ΔSaq* = −50.2 JK−1 mol−1 in 0.1 M HClO4, while for base hydrolysis the rate is first order in [(CH3NH2)5RhCl2+] and [OH−] at ionic strength 0.10 M and the rate coefficients (in M−1 s−1) are represented by ΔHOH*> = 108.6 kJ mol−1 and ΔSOH* = 74.1 J K−1 mol−1. Acid dissociation constants are reported for (RNH2)5MOH23+ (R = H or CH3; M = Rh or Co), and these, combined with spectral data, show CH3NH2 to be a poorer electron donor than NH3 in complexes of this type, contrary to expectations. The comparative kinetics of reactions of (RNH2)5MCl2+ support the assignment of an Ia mechanism to aquation when M = Rh or Cr, Id to aquation when M = Co, and Dcb for base hydrolysis in all these cases.



1970 ◽  
Vol 25 (11) ◽  
pp. 1772
Author(s):  
T.S.R Ao ◽  
A. Patil

Abstract It has been shown that in kinetically first order gas phase reactions occuring under electric discharge, such as the decomposition of N2O, the application, at various initial pressures, of the same multiple of the respective starting potential ensures that the reaction occurs at the same specific rate.



Sign in / Sign up

Export Citation Format

Share Document