Donor-acceptor complexes formed by perfluoro-organo bromides and iodides with nitrogenous and other bases. II. Band shapes and widths in the absorption spectrum of gaseous CF3I-N(CH3)3

1971 ◽  
Vol 24 (12) ◽  
pp. 2493 ◽  
Author(s):  
A Mishra ◽  
ADE Pullin

The absorption band centred at c. 77 cm-1 in gaseous mixtures of CF3I and N(CH3)3 previously reported and attributed to the N-I stretching mode of the complex CF3I-N(CH3)3 has been carefully re-examined. This band is of interest as an example of a low frequency ?dissociative type? vibrational mode of a weak molecular complex. The band is asymmetric and apparently structureless with a half intensity width at room temperature of 28-30 cm-1. The width of the band may be accounted for as arising from transitions vi + vi+1 where vi is the vibrational quantum number of the N-I stretching mode with vi up to c. 10 making appreciable contribution to the intensity on the low wave-number side. Centrifugal distortion in the complex is considered. Centrifugal stretching and consequent weakening of the bond may shift the band envelope 2-3 cm-1 to lower wave numbers. Assessment of these and other factors affecting the band shape suggest that the fundamental frequency is probably c. 90 cm-1. The band shape of the vibrational mode of the complex at c. 272 cm-1 is briefly discussed. Many of the considerations presented in this paper should apply to vibration-rotation band shapes in other weak molecular complexes. Some general consequences of anharmonicity for the interpretation of the spectra of weak molecular complexes are discussed.

1992 ◽  
Vol 02 ◽  
pp. C2-265-C2-270
Author(s):  
A. K. HASSAN ◽  
L. M. TORELL ◽  
L. BORJESSON

The low frequency Raman spectrum of B203 and the boroxol ring vibrational mode at 808 cm-1 have been studied from room temperature to 1273 K as the glass transforms to a melt. Both the low frequeney "boson" peak and the boroxol mode are markedly influenced by the glass transition. Raising the temperature above Tg the strength of the 808 cm-1 mode decreases linearly indicating the Similar behavior of the boroxol ring concentration. The boson peak shows a different temperature behavior, which mirrors that of the sound velo city. The structural correlation length demostrates the same correlation range in the liquid and the glass. The results, when compared with neutron diffraction measurements contradict a recently proposed relation between the "boson correlation length" and the position of the first sharp diffraction peak of the structure factor.


1970 ◽  
Vol 10 (6) ◽  
pp. 1005-1007
Author(s):  
A. V. Korshunov ◽  
V. F. Shabanov ◽  
V. E. Volkov

2020 ◽  
Author(s):  
Leila Abylgazina ◽  
Irena Senkovska ◽  
Sebastian Ehrling ◽  
Volodymyr Bon ◽  
Petko Petkov ◽  
...  

The pillared layer framework DUT-8(Zn) (Zn<sub>2</sub>(2,6-ndc)<sub>2</sub>(dabco), 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane, DUT = Dresden University of Technology) is a prototypical switchable MOF, showing characteristic adsorption and desorption induced open phase (<i>op</i>) to closed phase (<i>cp</i>) transformation associated with huge changes in cell volume. We demonstrate switchability strongly depends on a framework-specific critical particle size (d<i><sub>crit</sub></i>). The solvent removal process (pore desolvation stress contracting the framework) significantly controls the <i>cp</i>/<i>op</i> ratio after desolvation and, subsequently, the adsorption induced switchability characteristics of the system. After desolvation, the dense <i>cp</i> phase of DUT-8(Zn) shows no adsorption-induced reopening and therefore is non-porous for N<sub>2</sub> at 77 K and CO<sub>2</sub> at 195 K. However, polar molecules with a higher adsorption enthalpy, such as the polar molecules such as chloromethane at 249 K and dichloromethane (DCM) at 298 K can reopen the macro-sized crystals upon adsorption. For macro-sized particles, the outer surface energy is negligible and only the type of metal (Zn, Co, Ni) controls the DCM-induced gate opening pressure. The framework stiffness increases from Zn to Ni as confirmed by DFT calculations, X-ray crystal structural analyses, and low frequency Raman spectroscopy. The partial disintegration of the Zn based node hinges produces an overall increased stabilization of<i> cp </i>vs. <i>op</i> phase shifts the critical particle size at which switchability starts to become suppressed to even lower values (d<i><sub>crit</sub></i> < 200 nm) as compared to the Ni-based system (<i>d<sub>crit</sub></i> ≈ 500 nm). Hence, the three factors affecting switchability (energetics of the empty host, (<i>E<sub>op</sub>-E<sub>cp</sub></i>) (I), particle size (II), and desolvation stress (III)) appear to be of the same order of magnitude and should be considered collectively, not individually.


1980 ◽  
Vol 58 (11) ◽  
pp. 1640-1648 ◽  
Author(s):  
R. M. Lees ◽  
M. Ali Mohammadi

An investigation of the rotational spectrum of CH332SH, one of the most recent molecules to be detected in the interstellar medium, has been carried out over the 25–107 GHz region. The frequencies of a-type Δk = 0 R-branch transitions have been measured for the J = 1 ← 0 up to J = 4 ← 3 multiplets for torsional states νt = 0–3. In addition, many P-, Q-, and R-branch transitions with Δk ≠ 0 have been identified in order to provide a catalogue of lines for potential radio astronomical applications. Improved values of rotational and centrifugal distortion constants, a-type torsion–vibration–rotation interaction constants, and torsional barrier parameters (V3 = 444.76 cm−1; effective V6 = −2.07 cm−1) have been determined from least-squares analyses of the spectra.


Open Physics ◽  
2004 ◽  
Vol 2 (2) ◽  
Author(s):  
Elena Sheka

AbstractQuantum-chemical testing of donor-acceptor properties of binary molecular complexes, related to the singlet state, is suggested as QCh calculations of studied systems and their constituents by using both spin-nondependent (RHF) and spindependent (UHF) versions of the exploited computational tool. The avoided crossing of intermolecular interaction terms of neutral moleculesE int(A 0 B 0) and molecular ionsE int(A + B −) causes a multi-mode character of the ground state term. The dependence of D-A complex properties on the type of the term, space positions of the term minimum, and the interrelation of the corresponding energies are discussed. The suggested approach has been applied to binary complexes C60+X (X=TAE, TDAE, DMMA, COANP, 2Li, Mg).


Sign in / Sign up

Export Citation Format

Share Document