The mass spectra of the Schiff base derived from ethylenediamine and trifluoroacetylacetone and its metal complexes

1975 ◽  
Vol 28 (7) ◽  
pp. 1517 ◽  
Author(s):  
SE Livingstone ◽  
JH Mayfield

The mass spectrum of the Schiff base formed by the condensation of ethylenediamine and trifluoro-acetylacetone shows that the compound is N,N-ethylenebis(1,1,1-trifluoro-4-iminopentan-2-one). The mass spectra of the nickel(II), palladium(II) and copper(II) chelates of the Schiff base confirm this structure for the ligand. Mechanisms are proposed for some of the fragmentation reactions which occur in the mass spectrometer.

2017 ◽  
Vol 14 (1) ◽  
pp. 135-147
Author(s):  
Baghdad Science Journal

The free Schiff base ligand (HL1) is prepared by being mixed with the co-ligand 1, 10-phenanthroline (L2). The product then is reacted with metal ions: (Cr+3, Fe+3, Co+2, Ni+2, Cu+2 and Cd+2) to get new metal ion complexes. The ligand is prepared and its metal ion complexes are characterized by physic-chemical spectroscopic techniques such as: FT-IR, UV-Vis, spectra, mass spectrometer, molar conductivity, magnetic moment, metal content, chloride content and microanalysis (C.H.N) techniques. The results show the formation of the free Schiff base ligand (HL1). The fragments of the prepared free Schiff base ligand are identified by the mass spectrometer technique. All the analysis of ligand and its metal complexes are in good agreement with the theoretical values indicating the purity of Schiff base ligand and the metal complexes. From the above data, the molecular structures for all the metal complexes are proposed to be octahedral


2016 ◽  
Vol 13 (2) ◽  
pp. 19-28
Author(s):  
Baghdad Science Journal

New metal complexes of the ligand 4-[5-(2-hydoxy-phenyl)-[1,3,4- oxadiazol -2-ylimino methyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (L) with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) were prepared in alcoholic medium. The Schiff base was synthesized through condensate of [4-antipyrincarboxaldehyde] with[2-amino-5-(2-hydroxy-phenyl-1,3,4- oxadiazol] in alcoholic medium . Two tetradentate Schiff base ligand were used for complexation upon two metal ions of Co2+, Ni2+, Cu2+ and Zn2+ as dineucler formula M2L2.4H2O. The metal complexes were characterized by FTIR Spectroscopy, electronic Spectroscopy, elemental analysis, magnetic susceptidbility measurements, and also the ligand was characterized by 1H-NMR spectra, and mass spectra. The Structures of complexes were proposed from the measurements.


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 103
Author(s):  
Virgil Badescu

The aim of this article is the study of the fragmentation reactions of octaethoxycyclotetrasiloxane (CTET) initiated by electronic impact in the ionization chamber of a double focusing mass spectrometer. [...]


2020 ◽  
Vol 86 (4) ◽  
pp. 12-20
Author(s):  
A. G. Terentyev ◽  
R. V. Khatymov ◽  
A. V. Maltsev

Operation with positive ions formed from the impact of high energy electrons (usually 70 eV, which exceeds the ionization energy of the molecules) is a standard mode for mass spectrometric detectors of most gas chromatography-mass spectrometric complexes (GC/MS) in the basic configuration. At the same time, we have shown that the option of setting the energy of ionizing electrons (maintained in the design of some serial devices) within the pre-ionization region also allows one to obtain mass spectra of negative ions (NI) which, in turn, significantly expands the analytical potential of standard equipment. The formation of NI occurs in the low-energy range of 0 – 15 eV due to resonant capture of electrons by molecules (REC). In contrast to positive ions, the intensity of NI formation sharply (resonantly) depends on the electron energy and this dependence is characteristic of each chemical compound. Both the relative intensity of the mass-peaks and, in general, the ionic composition of the formed mass spectrum of NI significantly depend on the electron energy. The problem of choosing the optimal energy of ionizing electrons providing the same efficiency of mass-spectrometric determination of all components of complex mixtures of dissimilar compounds is also associated with the features of negative ion formation during chromatography-mass spectrometric analysis. To address the problem, we propose a technique providing generation of complete (in NI composition and intensities) mass spectra of NI through repeated variation of the energy of ionizing electrons in a given range of 0 – 10 eV. Technical implementation of the technique [1] was carried out at the Design Bureau «Chromatec «(Yoshkar Ola, Russia) in the form of a special electronic device, which was tested in pilot operation as part of the gas chromatograph complex with a quadrupole mass spectrometer «Chromatec». We describe the principle of operation of the device and present the results of tests.


2012 ◽  
Vol 9 (4) ◽  
pp. 2516-2523 ◽  
Author(s):  
Matangi Sunitha ◽  
Pragathi Jogi ◽  
Bathini Ushaiah ◽  
C. Gyana Kumari

Metal complexes of Ni(II), Co(II), Cu(II), Mn(II) and Zn(II) VO(IV) with a Schiff base derived from 3-Ethoxy Salicylaldehyde and 2-(2-amino-phenyl)1-H-Benzimidazol(2-[(Z)-{(2-(1H-benzimidazole-2yl)phenyl] imino} methyl]-6-ethoxy phenol-BMEP) were synthesized successfully. The resulting complexes were characterized by elemental analysis, magnetic moment measurements, conductivity measurements, IR, UV-VIS, 1H NMR, mass spectra and ESR spectral studies. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the ligand and its metal complexes were studied against two gram negative bacteria:E. coli, Pseudomonas flourescenceand two gram positive bacteria:Bacillus subitilis, Staphylococcus aureus. The activity data show that the metal complexes are more potent than the free ligand.


2010 ◽  
Vol 7 (2) ◽  
pp. 67
Author(s):  
Mohd Abdul Fatah Abdul Manan ◽  
Hadariah Bahron ◽  
Karimah Kassim ◽  
Mohd Asrul Hafaz Mohamad ◽  
Syed Nazmi Sayed Mohamad

A novel Schiff base containing nitrogen-oxygen-sulfur (NOS) donor atoms formed from the condensation reaction of S-2,4-dichlorobenzyldithiocarbazate (S-2,4BDTC) with 5-fluroisatin has been synthesized. Complexes of cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) with this Schiff base have been prepared and characterized using elemental analysis and various physico-chemical techniques. In the cobalt(II) and nickel(II) complexes the Schiff base behaves as a uninegatively charged tridentate nitrogen-oxygen-sulfur (NOS) chelating ligand, bonding through the azomethine nitrogen, thiolate sulfur and carbonylic oxygen of the isatin moiety. However, in the copper(II), zinc(II) and cadmium(II) complexes the Schiff base behaves as a nitrogen-sulfur (NS) bidentate chelating ligand, bonding through the azomethine nitrogen and thiolate sulfur. The Schiff base and the metal complexes were evaluated with respect to antimicrobial activity, which was performed in relation to two selected pathogenic microbials (Bacillus subtilis and Pseudomonas aeruginosa). It was observed that only the zinc Schiff base complex exhibited strong activity against the Bacillus subtilis bacteria with an inhibition zone of 25 mm. 


2010 ◽  
Vol 7 (2) ◽  
pp. 67
Author(s):  
Mohd Abdul Fatah Abdul Manan ◽  
Hadariah Bahron ◽  
Karimah Kassim ◽  
Mohd Asrul Hafiz Muhamad ◽  
Syed Nazmi Sayed Mohamad

A novel Schiff base containing nitrogen-oxygen-sulfur (NOS) donor atoms formed from the condensation reaction of S-2,4- dichlorobenzyldithiocarbazate (S-2.4BDTC) with 5-fluroisatin has been synthesized. Complexes of cobalt(ll), nickel(ll), copper(ll), zinc(ll) and cadmium(ll) with this Schiff base have been prepared and characterized using elemental analysis and various physico-chemical techniques. In the cobalt(ll) and nickel(II) complexes the SchifJbase behaves as a uninegatively charged tridentate nitrogen-oxygen-sulfur (NOS) chelating ligand, bonding through the azomethine nitrogen, thiolate sulfur and carbonylic oxygen of the isatin moiety. However. in the copper(ll), zinc(II) and cadmium(II) complexes the Schiff base behaves as a nitrogen-sulfur (NS) bidentate chelating ligand, bonding through the azomethine nitrogen and thiolate sulfur. The Schiff base and the metal complexes were evaluated with respect to antimicrobial activity, which was performed in reallion to two selected pathogenic microbials (Bacillus subtilis and Pseudomonas aeruginosa). It was observed that only the zinc Schiffbase complex exhibited strong activity against the Bacillus subtilis bacteria with an inhibition zone of25 mm.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


2020 ◽  
Vol 16 ◽  
Author(s):  
Meghshyam K. Patil ◽  
Vijay H. Masand ◽  
Atish K. Maldhure

: Schiff bases and their complexes are versatile compounds, which have been synthesized from the condensation of carbonyl compounds with amino compounds and exhibit a broad range of applications in biological, medicinal, catalysis, and industrial purposes. Furthermore, Schiff base-metal complexes have been used as a precursor for the synthesis of different metal oxides, which includes oxides of iron, cobalt, copper, nickel, manganese, vanadium, cadmium, zinc, mercury, etc. and ferrites such as Fe3O4, ZnFe2O4, and ZnCo2O4. These metal oxides have been utilized for several applications, which includes as a catalyst for several organic transformations and for biological activity. This review encompasses different methods of synthesis of metal oxides using Schiff base metal complexes precursor, their characterization, and various applications in detail.


Sign in / Sign up

Export Citation Format

Share Document