Experiments Directed Towards the Synthesis of Anthracyclinones. XXVIII. Titanium(IV)- and Tin(IV)-Mediated Cyclizations of ortho-Methallyl-Substituted Homochiral Dioxans

1996 ◽  
Vol 49 (6) ◽  
pp. 677 ◽  
Author(s):  
RC Cambie ◽  
KC Higgs ◽  
JJ Rustenhoven ◽  
PS Rutledge

Metal chloride cyclizations of the 4-demethoxy anthraquinonyl 1′,3'-dioxan (6) are highly diastereoselective , giving 9-chloro-9-methylanthracyclinones in high yield. The selectivity is inversely proportional to the strength of the Lewis acid, with the mild Lewis acid tin(IV) chloride/ dimethylformamide affording an 82% yield of the diastereomer (21). The predominant products have a (7S) configuration and a trans relationship between the C7 side chain and the 9-chloro substituent. Cyclization of the analogous dimethoxy 1′,3′-dioxan (4) with tin(IV) chloride/ dimethylformamide is considerably less selective, but the major product also has a (7S)-trans stereochemistry. Titanium(IV) chloride effects stereorandom cyclization of (4).

1961 ◽  
Vol 36 (4) ◽  
pp. 511-519 ◽  
Author(s):  
Margaret Wiener ◽  
Charles I. Lupa ◽  
E. Jürgen Plotz

ABSTRACT 17α-hydroxyprogesterone-4-14C-17α-caproate (HPC), a long-acting progestational agent, was incubated with homogenates of rat liver and human placenta. The rat liver was found to reduce Ring A of HPC under anaerobic conditions to form allopregnane-3β,17α-diol-20-one-17α-caproate and pregnane-3β,17α-diol-20-one-17α-caproate, the allopregnane isomer being the major product. The caproic acid ester was neither removed nor altered during the incubation. Placental tissue did not attack HPC under conditions where the 20-ketone of progesterone was reduced. It is postulated that this absence of attack on the side chain is due to steric hindrance from the caproate ester, and that this may account for the prolonged action of HPC.


Synthesis ◽  
2016 ◽  
Vol 48 (19) ◽  
pp. 3413-3419 ◽  
Author(s):  
Hannah Bartrum ◽  
Sébastien Carret ◽  
Jean-François Poisson

A mild method for the aldolization of N-sulfonylimidates was developed. The reaction proceeds in excellent diastereoselectivity to provide a range of useful β-hydroxyimidates in high yield. The innate reversibility of the reaction is suppressed by the use of a titanium complex as a Lewis acid.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 829 ◽  
Author(s):  
Zhang ◽  
Yuan ◽  
Miao ◽  
Li ◽  
Shan ◽  
...  

The side-chain alkylation of toluene with methanol was investigated over some Fe-modified Cs ion-exchanged X zeolite (CsX) catalysts prepared via the impregnation method using different iron sources. The absorption/activation behaviors of the reactants on the surface of the catalysts were studied by in situ Fourier-transform infrared (FT-IR) spectroscopy and temperature programmed desorption (TPD) mass measurements. Modification of CsX with a small amount of FeCl3 could result in a considerable decrease in catalytic activity, due mainly to the remarkable decrease in the density of acidic and basic sites of the catalysts. Interestingly, the Fe(NO3)3-modified CsX with an optimum Fe loading of 0.15 wt.% shows improved catalytic activity and high yield compared to the side-chain alkylation products. Modification of CsX with Fe(NO3)3 could also result in a decrease in basic sites of the catalyst. However, such a change does not bring an obvious negative effect on the adsorption/activation of toluene, while it could effectively inhibit the generation of the undesired bidentate formate. Furthermore, the introduced FeOx species (derived from the decomposition of Fe(NO3)3) may also act as new Lewis acidic sites to participate in the activation of methanol and to stabilize the formed active intermediates (i.e., unidentate formate). Therefore, modification of CsX with a suitable amount of Fe(NO3)3 may adjust its adsorption/activation ability for reagents by changing the acid–base properties of the catalyst, which can finally enhance the catalytic performance for the side-chain alkylation of toluene with methanol.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6826-6839
Author(s):  
Junjun Kong ◽  
Ling Zhang ◽  
Ziyi Niu ◽  
Rina Wu ◽  
Gaosheng Wang

In view of environmental and economic issues, co-production technology with pulp as the major product is an important developmental direction in biorefinery. In this paper, high-yield pulp was prepared by hydrothermal pretreatment with controlled pH and subsequent mechanical refining using corn stover as raw material. By adding acetic acid or sodium hydroxide, the properties of the hydrolysate and the pulp were altered. Reducing the pH during hydrothermal pretreatment resulted in more cellulose and hemicellulose being released, while less lignin was released. Increased pH led to more lignin being released, while dissolution of carbohydrates did not change significantly. A maximum pulp yield at pH 5.84 of hydrolysate was obtained when 3.0% sodium hydroxide was used. The strength of pulp is highly related to the removal of lignin during hydrothermal pretreatment. The relationship between pH value in hydrothermal pretreatment and the physical properties of the pulp was established and could be further used for prediction and as guidance for process control. Moreover, the results could be used to develop technologies for industrial utilization of agricultural straw to co-generate fiber and other bio-based products.


2020 ◽  
Vol 22 (9) ◽  
pp. 2744-2749
Author(s):  
Fang Hao ◽  
Xin Wang ◽  
Linfang Huang ◽  
Wei Xiong ◽  
Pingle Liu ◽  
...  

This is the first time to synthesize naphthylamine from one-step naphthalene amination by vanadium catalysts with high yield under mild condition. It could obtain ∼70% yield of naphthylamine, with major product of valuable 1,5-diaminonaphthalene.


Synlett ◽  
2020 ◽  
Vol 31 (14) ◽  
pp. 1423-1429
Author(s):  
Takashi Matsumoto ◽  
Yuuki Fujimoto ◽  
Chisato Furukawa ◽  
Kanae Takahashi ◽  
Miho Mochizuki ◽  
...  

The SNAr reaction of 1-fluoroxanthone derivatives with alkoxide of 1,1-dimethylallyl alcohol cleanly afforded the corresponding ethers, which have thus far been unavailable. The obtained ethers underwent the Claisen rearrangement at room temperature by treatment with silica gel in toluene. This two-step protocol provides expeditious and high-yield access to xanthones possessing isoprenyl or the related allylic side chain at the C2 position.


2020 ◽  
Vol 7 (1) ◽  
pp. 60-66
Author(s):  
Navin B. Patel ◽  
Rahul B. Parmar ◽  
Hetal I. Soni

Background: A Lewis acid promoted efficient and facile procedure for one-pot synthesis of a novel series of fluoroquinolone clubbed with thiadiazoles motifs under microwave irradiation is described here. This technique has more advantages such as high yield, a clean procedure, low reaction time, simple work-up and use of Lewis acid catalyst. Objective: Our aim is to generate a biologically active 1,3,4- thiadiazole ring system by using a onepot synthesis method and microwave-assisted heating. High yield and low reaction time were the main purposes to synthesize bioactive fluoroquinolone clubbed 1,3,4- thiadiazole moiety. Methods: Fluoroquinolone Clubbed 1,3,4-Thiadiazole Motifs was prepared by Lewis acid promoted, one-pot synthesis, under microwave irradiation. All the synthesized molecules were determined by IR, 1H NMR, 13C NMR, and Mass spectra. The antimicrobial activity of synthesized compounds was examined against two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), and three fungi (Candida albicans, Aspergillus niger, Aspergillus clavatus) using the MIC (Minimal Inhibitory Concentration) method and antitubercular activity H37Rv using L. J. Slope Method. Results: Lewis acid promoted, one-pot synthesis of Fluoroquinolone clubbed 1,3,4-Thiadiazole motifs under microwave irradiation is an extremely beneficial method because of its low reaction time and good yield. Some of these novel derivatives showed moderate to good in vitro antibacterial, antifungal, and antitubercular activity. Conclusion: One-pot synthesis of 1,3,4-Thiadiazole by using Lewis acid catalyst gives a good result for saving time and also getting more production of novel heterocyclic compounds with good antimicrobial properties via microwave heating method.


2000 ◽  
Vol 65 (11) ◽  
pp. 1791-1804 ◽  
Author(s):  
Osman Çakmak ◽  
Ismail Kahveci ◽  
Íbrahim Demirtaş ◽  
Tuncer Hökelek ◽  
Keith Smith

High-temperature bromination of tetralin (1,2,3,4-tetrahydronaphthalene) with bromine resulted in benzylic bromination to give 1,4-dibromo-1,2,3,4-tetrahydronaphthalene (4) as a major product and several secondary products. Photolytic bromination of tetralin and subsequent double dehydrobromination of 1,1,4,4-tetrabromo-1,2,3,4-tetrahydronaphthalene (10) gave 1,4-dibromonaphthalene (11) as the sole product in a high yield. 1,4-Dibromonaphthalene is efficiently converted to the corresponding methoxy (12 and 13) and cyano (14 and 15) derivatives of naphthalene.


Sign in / Sign up

Export Citation Format

Share Document