Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance

2009 ◽  
Vol 60 (8) ◽  
pp. 697 ◽  
Author(s):  
Mahabubur Mollah ◽  
Rob Norton ◽  
Jeff Huzzey

The AGFACE project commenced in June 2007 at Horsham (36°45′07″S, 142°06′52″E; 127 m elevation), Victoria, Australia. Its aim is to quantify the interactive effects of elevated atmospheric carbon dioxide concentration (e[CO2]), nitrogen, temperature (accomplished by early and late sowing times), and soil moisture on the growth, yield, and water use of wheat (Triticum aestivum L.) under Australian conditions. The main engineering goal of the project was to maintain an even temporal and spatial distribution of carbon dioxide (CO2) at 550 μmol/mol within AGFACE rings containing the experimental treatments. Monitoring showed that e[CO2] at the ring-centres was maintained at or above 90% of the target (495 μmol/mol) between 93 and 98% of the operating time across the 8 rings and within ±10% of the target (495–605 μmol/mol) between 86 and 94% of the time. The carbon dioxide concentration ([CO2]) measured inside the rings declined non-linearly with increasing distance downwind of the CO2 source and differed by 3–13% in concentration between the two canopy heights in each ring, but was not affected by wind speed or small variations in [CO2] at the ring-centres. The median values for model-predicted concentrations within the inner 11-m-diameter portion of the rings (>80% of the ring area) varied between 524 and 871 μmol/mol but remained close to target near the centres. The design criteria adopted from existing pure CO2 fumigating FACE systems and new ideas incorporated in the AGFACE system provided a performance similar to its equivalent systems. This provides confidence in the results that will be generated from experiments using the AGFACE system.




2018 ◽  
Author(s):  
Oscar A. Douglas-Gallardo ◽  
Cristián Gabriel Sánchez ◽  
Esteban Vöhringer-Martinez

<div> <div> <div> <p>Nowadays, the search of efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf -SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). Chemical and electronic properties of the proposed SiQDs have been studied with Density Functional Theory (DFT) and Density Functional Tight-Binding (DFTB) approach along with a Time-Dependent model based on the DFTB (TD-DFTB) framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf -SiQDs for photochemically activated carbon dioxide fixation. </p> </div> </div> </div>



Sign in / Sign up

Export Citation Format

Share Document