Pasture mixes with lucerne (Medicago sativa) increase yields and water-use efficiencies over traditional pastures based on subterranean clover (Trifolium subterraneum)

2016 ◽  
Vol 67 (1) ◽  
pp. 69 ◽  
Author(s):  
M. R. McCaskill ◽  
M. C. Raeside ◽  
S. G. Clark ◽  
C. MacDonald ◽  
B. Clark ◽  
...  

Pastures sown to lucerne (Medicago sativa L.) with a perennial non-legume could increase feed supply relative to traditional pastures based on subterranean clover (Trifolium subterraneum L.). Such mixtures might also be preferable to pure lucerne pastures, which are prone to weed invasion. Yield and water-use efficiency (harvested dry matter per unit evapotranspiration) of mixtures with lucerne or subterranean clover were compared a field experiment established under rainfed conditions at Hamilton, Victoria. Soil moisture and dry matter production were measured over 2 years. Treatments included chicory (Cichorium intybus L.), cocksfoot (Dactylis glomerata L.) and tall fescue (Festuca arundinacea Shreb.) with either lucerne or subterranean clover; pure lucerne; and phalaris (Phalaris aquatica L.) and perennial ryegrass (Lolium perenne L.) with only subterranean clover. In the second year, dry matter production from lucerne mixtures exceeded that of equivalent mixtures with subterranean clover in spring, summer and winter. In spring, the lucerne component continued producing for longer than the clover component through its use of deeper stored soil water, and in summer, lucerne continued to grow slowly after the grass component had entered a drought-induced dormancy. In winter, the contribution from the lucerne component complemented, rather than competed with, that from the non-legume component. Water-use efficiencies during winter–spring ranged from 4 kg ha–1 mm–1 for chicory–clover to 27 kg ha–1 mm–1 for a fescue–lucerne mixture, and during summer–autumn from nil for cocksfoot–clover to 13 kg ha–1 mm–1 for a fescue–lucerne mixture. This study demonstrates that lucerne-based mixtures can increase forage supply per unit water use relative to traditional pastures based on subterranean clover.

1981 ◽  
Vol 21 (112) ◽  
pp. 498 ◽  
Author(s):  
GD Reddy ◽  
AM Alston ◽  
KG Tiller

Seasonal changes in the concentrations of copper, molybdenum and sulfur in subterranean clover (Trifolium subterraneum), silver grass (Vulpia sp.), Wimmera ryegrass (Lolium rigidum), and capeweed (Arctotheca calendula) growing on lateritic podzolic soils were measured in glasshouse and field studies. The effects of varying soil temperature and water content on the concentrations of copper, molybdenum and sulfur in subterranean clover on a lateritic podzolic soil and a calcareous sand were also investigated. Similar seasonal patterns in plant composition were observed in the glasshouse and the field. The concentration of molybdenum tended to remain constant throughout the season, but that of copper and sulfur declined from autumn to spring; the decline was more rapid in the grasses than in subterranean clover and capeweed. Subterranean clover had higher concentrations of copper and sulfur but lower molybdenum than silver grass or Wimmera ryegrass. Capeweed contained more copper and molybdenum but less sulfur than subterranean clover. The concentrations of molybdenum and sulfur were similar in capeweed and the grasses. lncreasing soil temperature from 12 to 22�C increased the dry matter production and the concentrations of copper and molybdenum (but not sulfur) in subterranean clover on both soils. lncreasing soil water content slightly increased dry matter production and the concentration of molybdenum but had no effect on the concentration of copper and sulfur in subterranean clover. The results are discussed in relation to the health of grazing animals.


1993 ◽  
Vol 44 (1) ◽  
pp. 89 ◽  
Author(s):  
MJ Blumenthal ◽  
RL Ison

A field experiment was established at Forbes in central-west New South Wales to investigate the hypothesis that the pattern and efficiency of water use varies between genotypes of both (Trifolium subterraneum) and murex medic (Medicago murex), and that this would affect the success of these genotypes in this environment. To test this hypothesis the productivity of two lines of M. murex (CD26 and CD53) and four cultivars of T.subterraneum (Seaton Park and Woogenellup, and two recently released cultivars, Junee and Dalkeith) were compared. Genotypes were grown both with and without irrigation and soil water was monitored for the duration of the field experiment (1987-1989). Soil water use differed little between genotypes, but when differences did occur they were related to maturity grading of the genotype with the earlier maturing cv. Dalkeith using more water without irrigation, and the later maturing cv. Junee using more water with irrigation. There was no evidence of sub. clover dry matter yield declining with time; total yield over the three years exceeded 18 000 kg/ha for all cultivars. Murex medic dry matter yields were higher than sub. clover in the year of sowing; however, dry matter yield in swards was depressed in the year following sowing and weeds contributed more to total sward yield compared to sub. clover in the third year. Both hard and soft-seeded subclover cultivars proved to be equally successful in terms of dry matter production with different cultivars performing better in different seasons and under different irrigation treatments. Sub. clover cvv. Dalkeith and Junee were able to take greater advantage of available soil water early. in autumn than the other genotypes. It was concluded that water availability is not the only factor limiting sub. clover and murex medic dry matter yield in this environment.


1989 ◽  
Vol 29 (6) ◽  
pp. 785 ◽  
Author(s):  
PM Evans ◽  
RS Smith ◽  
JA Carpenter ◽  
TB Koen

Fifteen cultivars of subterranean clover (Trifolium subterraneum L.) and 1 cultivar of balansa clover (Trifolium balansae Boiss.) were screened for tolerance to 2,4-DB, MCPA-Na salt, MCPA amine, bromoxynil and combinations of these herbicides. The clovers were sprayed at the 3-4 trifoliate leaf stage and dry matter production assessed in the following spring. All herbicides reduced clover dry matter production (DM). The least damaging herbicides to subterranean clover were bromoxynil (0.3 kg a.i./ha) and MCPA-Na salt (0.313 kg a.i./ha) which reduced DM production by 23 and 39% respectively. The most damaging were 2,4-DB (0.8 kg a.i./ha) and MCPA amine (0.313 kg a.i./ha) plus bromoxynil (0.3 kg a.i./ha) which reduced DM production by 62 and 56% respectively. The damage caused by MCPA-Na salt (0.5 kg a.i./ha) plus bromoxynil (0.3 kg a.i./ha) was intermediate, reducing clover production by 44%. Second year seedling regeneration was reduced across all herbicide treatments by 32%. Of the currently recommended cultivars, Trikkala was the most tolerant to herbicides, with an average reduction in DM of 37%. Bromoxynil was the herbicide tolerated best by cvv. Enfield, Karridale, Larisa, Mt Barker and Woogenellup. The most effective weed killing treatments were 2,4-DB plus bromoxynil and MCPA-Na salt (0.5 kg a.i./ha) plus bromoxynil(0.3 kg a.i./ha).


2011 ◽  
Vol 37 (8) ◽  
pp. 1432-1440
Author(s):  
Cheng-Yan ZHENG ◽  
Shi-Ming CUI ◽  
Dong WANG ◽  
Zhen-Wen YU ◽  
Yong-Li ZHANG ◽  
...  

1988 ◽  
Vol 15 (6) ◽  
pp. 815 ◽  
Author(s):  
GC Wright ◽  
KT Hubick ◽  
GD Farquhar

Variation in water-use efficiency (W, g of total dry matter produced/kg water used), and its correlation with cultivar isotope discrimination in leaves (Δ) was assessed in peanut plants grown in small canopies in the field. Plants were grown in separate minilysimeters that were both embedded in the ground and positioned above the crop. Differences among cultivars were found in W and � and the relationship between W and Δ was compared for plants grown in open and closed canopies. Genetic variability in W in plants grown in the field under non-limiting water conditions was demonstrated, with Tifton-8, of Virginia habit, having the highest W (3.71 g/kg) and Rangkasbitung, an Indonesian cultivar of Spanish habit, the lowest (2.46 g/ kg). Variability in W was due to variation in total dry matter production more than that of water use. A strong negative correlation was found between Δ and W, and also between Δ and total dry matter. The relationship between whole plant W, including roots, and Δ was stronger than that between shoot W, without roots and Δ. The improvement occurred because of variation among cultivars in the root to shoot ratio. This highlights the importance of taking account of root dry matter in studies concerning W. There were significant differences in W and Δ between plants in pots above-ground compared to pots in the ground, with above-ground plants having significantly lower values of both W and Δ. The ranking of W and Δ among cultivars was not affected by the contrast in environment, which suggests these parameters are under strong genetic control. Total above-ground dry matter yield at maturity was negatively correlated with Δ, while pod yield was not. It appears a negative association between harvest index and Δ may exist; however not all cultivars used in this and other studies follow this response. Both water-use efficiency, Wand total dry matter production are negatively correlated with Δ in leaves of peanut plants grown in small canopies in the field. Measurement of Δ may prove a useful trait for selecting cultivars with improved W and total dry matter yield under field conditions.


Sign in / Sign up

Export Citation Format

Share Document