scholarly journals Quantifying the interactions between defoliation interval, defoliation intensity and nitrogen fertiliser application on the nutritive value of rainfed and irrigated perennial ryegrass

2017 ◽  
Vol 68 (12) ◽  
pp. 1100 ◽  
Author(s):  
K. G. Pembleton ◽  
R. P. Rawnsley ◽  
L. R. Turner ◽  
R. Corkrey ◽  
D. J. Donaghy

A key goal of temperate pasture management is to optimise nutritive value and production. The influence of individual components such as irrigation, nitrogen (N) fertiliser, and grazing interval and intensity has been well researched, yet conjecture remains regarding practices that optimise pasture nutritive value, largely because interactions between inputs and grazing management have not been quantified. A 2-year, split-split-plot experiment was undertaken to investigate these interactions in a perennial ryegrass (Lolium perenne L.) dominant pasture at Elliott, Tasmania. Irrigation treatments (rainfed or irrigated) were main plots and defoliation intervals (leaf regrowth stage: 1-, 2- or 3-leaf) were subplots. Defoliation intensity (defoliation height: 30, 55 or 80 mm) and N fertiliser (0, 1.5 or 3.0 kg N/ha.day) were crossed within sub-subplots. Herbage samples were collected from each plot four times during the experiment and analysed for concentrations (% dry matter, DM) of neutral detergent fibre (NDF), acid detergent fibre (ADF) and crude protein (CP). Metabolisable energy (ME) concentration (MJ/kg DM) was estimated from these values. ME concentration decreased as defoliation height and interval increased for all time points except during winter. Crude protein concentration increased with increasing N fertiliser applications in the plots defoliated at the 1-leaf stage, but only as N applications increased from 1.5 to 3.0 kg N/ha.day for the plots defoliated at the 2- and 3-leaf stages. As N application rates increased from 0 to 1.5 kg N/ha.day, plots defoliated at the 3-leaf stage had greater increases in NDF concentration than plots defoliated at the 1-leaf stage, except during spring. As defoliation height and interval increased, ADF concentration increased in both spring and summer. Although defoliating at frequent intervals (1-leaf stage) and lower heights (30 mm) produced pasture of marginally higher nutritional value, these benefits are mitigated by the previously established, negative consequences of lower pasture yield and poor pasture persistence. Consequently, grazing management that maximises pasture productivity and persistence (i.e. defoliation between the 2- and 3-leaf regrowth stages to a height of 55 mm) should be applied to perennial ryegrass pastures irrespective of input management.

1998 ◽  
Vol 38 (8) ◽  
pp. 821 ◽  
Author(s):  
K. F. Smith ◽  
R. J. Simpson ◽  
R. N. Oram ◽  
K. F. Lowe ◽  
K. B. Kelly ◽  
...  

Summary. Two lines of perennial ryegrass (Lolium perenne L.), cv. Aurora and breeding line Ba 11351, from the United Kingdom with elevated concentrations of water-soluble carbohydrates in the shoot were compared with the standard cultivars, Ellett, Vedette and Kangaroo Valley, in pure grass swards under irrigation at Kyabram, Victoria, and Gatton, Queensland, and under natural rainfall at Condah, Victoria, during 1995–97. Near infrared reflectance spectroscopy was used to predict the water-soluble carbohydrate, crude protein, in vitro dry matter digestibility, neutral and acid detergent fibre, and Klason lignin concentrations of the perennial ryegrass herbage. Herbage yield and water-soluble carbohydrate differed between cultivars at each site at most harvests, with the high water-soluble carbohydrate lines usually yielding less and having higher water-soluble carbohydrate concentrations than the 3 standard cultivars. However, the high water-soluble carbohydrate lines also had higher water-soluble carbohydrate concentrations at harvests where their yield was equal to the standard cultivars. The other nutritive value traits differed significantly at more than half of the 32 harvests: the high water-soluble carbohydrate lines had higher crude protein and dry matter digestibility, and lower neutral detergent fibre, the neutral detergent fibre containing less acid detergent fibre and lignin than did the standard cultivars. The high water-soluble carbohydrate lines were more susceptible to crown rust during spring and summer than the standard cultivars at Kyabram and Gatton: heavy infections reduced yield, water-soluble carbohydrate, dry matter digestibility and crude protein. Higher water-soluble carbohydrate may depend on only a few genes, as does rust resistance and it seems likely that high yielding, high water-soluble carbohydrate cultivars can be developed by recombination and selection.


2017 ◽  
Vol 68 (12) ◽  
pp. 1081 ◽  
Author(s):  
A. R. Lawson ◽  
K. B. Kelly ◽  
M. E. Rogers

Tall fescue (Festuca arundinacea (Schreb) Darbysh.) has the potential to become a useful component of irrigated dairy pastures in northern Victoria owing to its high dry matter (DM) production compared with perennial ryegrass. However, tall fescue is not widely grown because its grazing management is perceived as difficult. In October 2010, a tall fescue–white clover pasture was established and irrigated. In September 2011, six grazing-management treatments were imposed over 3 years, involving grazing: at 1-leaf stage; at 2-leaf stage (1.5-leaf stage during spring); at 3-leaf stage (2.5-leaf stage during spring); at intervals based upon days between grazings ranging from 15 days in October–December to 60 days in winter; at intervals as above except for 21 days in October–December; and at intervals approximating that of a well-managed perennial-ryegrass-based pasture . Measurements included pre- and post-grazing pasture mass, nutritive characteristics, botanical composition and plant frequency. Pasture consumption from the treatment grazed at the 3-leaf stage was >3.5 t DM ha–1 year–1 (30%) greater than from the three most frequently grazed treatments. However, crude protein content was 1–3% DM units lower when grazed at the 3-leaf stage compared with the two most frequently grazed treatments. There was no effect on estimated metabolisable energy or neutral detergent fibre contents of the pasture on offer. Differences in pasture composition between the pastures grazed at the 3-leaf stage and those most frequently grazed emerged over time and were most conspicuous in the third year, with a greater plant frequency (79% v. 66%) and tall fescue content (61% v. 40% DM) and lower weed content (14% v. 28% DM). From the study, a grazing regime for tall fescue based on the 3-leaf stage appears promising because it produced the most DM over the experiment. A disadvantage of this regime was the need for an extra mowing each year. The practicality of this approach to grazing tall fescue needs to be tested at the whole-farm level.


2004 ◽  
Vol 84 (3) ◽  
pp. 791-793 ◽  
Author(s):  
H. T. Kunelius ◽  
K. B. McRae ◽  
G. H. Dürr ◽  
S. A. E. Fillmore

Seed production, plant characteristics and herbage regrowth of three cultivars of Westerwolds ryegrass (Lolium multiflorum Lam.) were determined during 3 production years. Ryegrass was fertilized with nitrogen at 60, 90 and 120 kg ha-1 applied either all at the two- to three-leaf stage or split (3:2) between the two- to three-leaf stage and stem elongation. Seed yield of three cultivars ranged from 742 to 1440 kg ha-1. Nitrogen fertilizer at 90 kg ha-1 resulted in near maximum seed yields. Single and split applications of nitrogen resulted in similar seed yields. Density of fertile tillers ranged from 541 to 911 m-2 among the cultivars and responded linearly to applied N. A positive relationship was detected between the density of fertile tillers and seed yield. Herbage in aftermath averaged 2280 kg ha-1 dry matter, 125 g kg-1 crude protein, 597 g kg-1 neutral detergent fibre and 344 g kg-1 acid detergent fibre. Key words: Lolium multiflorum, Westerwolds ryegrass, nitrogen fertilizer, seed, tiller, spikelet, herbage, herbage composition


2001 ◽  
Vol 41 (1) ◽  
pp. 29 ◽  
Author(s):  
D. J. Watson ◽  
A. Avery ◽  
G. J. Mitchell ◽  
S. R. Chinner

Phalaris (Phalaris aquatica cv. Sirosa)-based pastures at Sandy Creek (north-eastern Victoria) and Flaxley (South Australia) were subjected to grazing strategies based on different pre- and post-grazing pasture dry matter levels for 3 years, 1994–96. At Sandy Creek, 3 treatments consisted of commencing grazing when either 1600 (1), 2200 (2) or 2800 (3) kg dry matter per hectare (DM/ha) of pasture had accumulated, with treatments being grazed to a pasture residual of 1200 kg DM/ha. Grazing strategies were imposed over autumn–winter. At Flaxley, there were 5 treatments. Grazing commenced when either 1800 (1) or 2200 (2) kg DM/ha of pasture had accumulated, and was grazed to a pasture residual of 1200 kg DM/ha. Also when either 2200 (3) or 2600 (4) kg DM/ha of pasture had accumulated and these treatments were grazed to a pasture residual of 1800 kg DM/ha. A further treatment was when phalaris had reached a 4-leaf stage (5) (4 fully expanded leaves per tiller) and this was grazed to a residual of 1200 kg DM/ha. The grazing strategies were imposed over the autumn, winter and spring. Pasture consumption at Sandy Creek was higher in treatments 2 and 3. Pasture metabolisable energy (ME) levels and crude protein contents were not affected by treatment. Pasture consumption at Flaxley was greater in treatments 2 and 4. The strategy of grazing at the phalaris 4-leaf stage (5) showed potential for large spring growth. The ME of pasture was unaffected by treatments. The optimal grazing strategy to increase pasture growth for phalaris cv. Sirosa-based pastures in winter-dominant rainfall zones of temperate Australia, receiving about 700 mm average annual rainfall appears to be: allowing 2200 or 2600 kg DM/ha of pasture to accumulate before grazing back to a pasture residual of 1200 or 1800 kg DM/ha, respectively.


2005 ◽  
Vol 45 (12) ◽  
pp. 1595 ◽  
Author(s):  
K. B. Kelly ◽  
C. R. Stockdale ◽  
W. K. Mason

Two experiments were conducted over 3 years. One was of factorial design involving 2 sowing rates of white clover (Trifolium repens L. cv. Haifa; sown at 8 or 3 kg/ha) and perennial ryegrass (Lolium perenne L. cv. Grasslands Nui; sown at 5 or 15 kg/ha) grazed by dairy cows at 2 frequencies [frequent (2–3 weeks in spring/autumn) and infrequent (4–6 weeks in spring/autumn)] and 2 intensities [hard (residual rising plate meter heights of less than 4 cm) and lax (residual rising plate meter heights of more than 5 cm)]; and the second was a regression design involving 5 sowing rates of white clover and ryegrass ranging from pure clover to pure ryegrass (sown at 10/0 through to 0/20 kg/ha), all grazed frequently and at a hard intensity. The hypotheses tested were that (1) pure white clover swards would be at least as productive as those that contained ryegrass, and (2) more frequent grazing would result in greater quantities of DM removed, while hard grazing would maintain a higher clover content. In general, the hypotheses were confirmed. Over the 3 years of the experiments, pure white clover swards were at least as productive as mixed swards in a situation where no nitrogen fertiliser was applied. In the first year, the amount of DM removed declined (P<0.05) as the ryegrass sowing rate increased, but by year 3, the pure clover treatment out-yielded the other treatments. Except for the first year, frequent grazing resulted in more (P<0.05) DM removed than did infrequent grazing. Frequently grazed swards also had higher daily net photosynthesis after grazing than did the swards in infrequently grazed treatments, and achieved maximum levels of photosynthesis more quickly. There was no difference in photosynthesis rate, despite significant differences in clover content, between sowing rate treatments, regardless of grazing management. Initial sowing rate had a large effect on clover content in year 1, but by year 3, most of this had disappeared as clover contents rapidly converged. Frequency of grazing had its greatest effect on clover content in year 1, with infrequent grazing resulting (P<0.05) in the greatest clover contents. Grazing intensity was an important determinant of clover content in years 2 and 3, where hard grazing resulted (P<0.05) in higher clover content. Digestibility of the herbage on offer ranged from 65 to 80%, and crude protein concentrations varied from 12 to 26%. In general, frequent grazing resulted in a digestibility of 2–4 percentage units higher than infrequent grazing, with hard grazing also tending to increase digestibility. Hard grazed treatments always had high crude protein concentrations in the herbage present before grazing, and there was a slightly higher concentration in frequently grazed herbage compared with herbage that was grazed less frequently. The white clover–perennial ryegrass swards generally responded best to a combination of frequent and hard grazing. However, neither white clover nor perennial ryegrass appears to be well adapted to the combination of soils, climate, irrigation and grazing by dairy cows that occurs in the northern irrigation region of Victoria, as evidenced by a rapid influx of weeds and the general decline in productivity over the duration of the experiment.


2018 ◽  
Vol 58 (9) ◽  
pp. 1677 ◽  
Author(s):  
F. Jochims ◽  
C. H. E. C. Poli ◽  
E. M. Soares ◽  
P. C. F. Carvalho

The present study aimed to define the most appropriate management for a natural grassland during winter so as to improve its botanical composition and forage nutritive value during the subsequent spring. The experiment was conducted in an 8.4-ha Pampa biome natural-grassland area and divided into 12 0.7-ha paddocks for 196 days. During the first 84 days (winter), two grazing methods (GM), namely continuous (CS) and rotational grazing (RS), and two herbage allowances (HA), namely 12 and 18 kg DM/100 kg bodyweight, were imposed on the ewes in early pregnancy, which resulted in the following four treatments: C18, C12, R18 and R12. From Day 85 onward (final third of pregnancy), all paddocks were managed with C18 so as to avoid intake restrictions. The sward was characterised by herbage mass (HM), green leaf mass (GLM), stem mass, senescent material, legume mass, forage growth (FG), canopy height, canopy density and weeds mass (other than grass and not preferred species). The qualitative characteristics were shown as neutral detergent fibre (NDF), acid detergent fibre (ADF), lignin, crude protein (CP) content and ingested crude protein. Although GLM was higher when RS was applied, HM did not differ between GM and HA when management factors were applied during winter. In spring, increased HM was observed in paddocks managed with 18% HA. Weeds mass presented GM × HA interaction, with the lowest participation in Treatment C12. The NDF and ADF levels differed between HA, in addition to being higher in 12% HA and during winter periods. In spring, the lowest NDF levels were found in paddocks under 12% HA and ADF changed only along the periods. The GM and HA applied during winter did not change the lignin content. The CP in winter differed only over the periods. Treatment C12 was applied in the winter and resulted in 8.1% more CP than did C18, R12 and R18 in the spring. There was a GM × HA × Period interaction in ingested CP, revealing that the treatments during winter influenced the quality of the ingested herbage during spring. Ewes in C12 ingested herbage with more CP than did the animals in the other treatments. Variations in grazing methods combined with HA during winter influenced the chemical and structural characteristics of the sward. High stocking rate with continuous stocking presented better chemical characteristics than did the other treatments and the use of high stocking rate in continuous grazing may have an important effect on spring pasture quality due to changes in sward structural characteristics.


2009 ◽  
Vol 2009 ◽  
pp. 93-93
Author(s):  
M Afdal ◽  
S Syarif ◽  
A Kasim

Palm oil petiole (POP) is a pruning by-product from palm oil plantations. POP is the stalk of the palm oil frond (POF) without the leaflets and the outer layer. By weight, it contributed about 30 percent of POF. POP was a possible alternative for POF in feeding Bali cows (Bos sondaecus) since Bali cows we observed to reject fresh POF. Central Bureau of Indonesian Statistics (2006) reported that the production of POF was around 10,869,365 t from around 3,682,900 ha of palm oil plantation in Indonesia which is equivalent to 3,260,810 t of POP. POF are successfully used as feed for Bos taurus and Bos indicus and there are a lot of studies being done, especially in Malaysia. Alimon and Hair Bejo (1995) reported that the chemical composition of POF is 47, 385, 787, 556 g kg-1 and 5.65 MJ kg-1 for crude protein (CP), crude fibre, neutral detergent fibre (NDF), acid detergent fibre (ADF) and metabolisable energy respectively. However, there is no information on the nutritive value of POP and its palatability in Bali cows. The aims of this study were to evaluate the nutritive value of POP, and palatability of POP types by Bali cows when processed in several forms.


2014 ◽  
Vol 54 (3) ◽  
pp. 234 ◽  
Author(s):  
J. Tharmaraj ◽  
D. F. Chapman ◽  
J. Hill ◽  
J. L. Jacobs ◽  
B. R. Cullen

A dairy farmlet experiment was conducted at Terang in south-west Victoria, Australia, over 4 years to test the hypothesis that a 30% increase in forage harvested per ha could be achieved in a production system that incorporated a range of Complementary Forages with perennial ryegrass (CF) compared with a well managed perennial ryegrass-only farmlet (‘Ryegrass Max’, RM). The CF farmlet included perennial ryegrass pasture (44% of the farmlet area on average over 4 years), but also incorporated oversowing perennial ryegrass with short-term ryegrasses (average 16% of farmlet area) to increase winter growth, tall fescue-based pasture (average 20% of farmlet area) to increase production in the late spring–summer period, a double cropping rotation (15% of farmlet area) based on winter cereal for silage production followed by summer brassica crops for grazing, and summer crops used in the pasture renovation process (average 5% of farmlet area). The RM and CF farmlets were stocked at 2.2 and 2.82 June-calving cows/ha, respectively and average annual nitrogen (N) fertiliser application rates (pasture only) were 141 and 153 kg N/ha, respectively. The total amount of forage harvested per year was generally less than predicted from pre-experimental modelling of both farmlets. However, the proposed target of a 30% increase in home-grown forage harvest per ha in the CF system compared with RM was exceeded in 2005–06 (+33%), with 21, 16 and 11% higher forage harvest achieved in CF in 2006–07, 2007–08 and 2008–09, respectively (average for all 4 years = 20%). Annual forage harvested in RM ranged between 6.5 and 8.9 t DM/ha compared with 7.9–10.3 t DM/ha in CF. Approximately two-thirds of the increased forage harvest in CF came from higher rates of pasture consumption per ha and one-third from the double cropping component of the system, although the performance of the double crop (mean annual production of 11.5 t DM/ha) was well below the expected 20 t DM/ha based on pre-experimental modelling. The higher per-hectare pasture harvest rates in CF were primarily due to increased perennial ryegrass pasture consumption achieved through higher stocking rates and efficient responses to higher N inputs from both higher fertiliser rates and additional supplementary feeding. In CF, the DM harvested from pastures oversown with short-term ryegrasses was lower than perennial ryegrass, while tall fescue-based pastures were similar to perennial ryegrass. Poor spring rainfall in 2006–07 and 2008–09 likely contributed to the lower than expected DM yields of tall fescue-based pasture and the summer crops within the double cropping component. Home-grown forage harvest rates can be increased by 11–33% above what is currently achieved by best industry practice with perennial ryegrass-only pastures using complementary forages but perennial ryegrass will remain a key component of the forage base for dairy production in southern Australia.


1999 ◽  
Vol 50 (4) ◽  
pp. 537 ◽  
Author(s):  
G. R. Saul ◽  
G. A. Kearney ◽  
P. C. Flinn ◽  
C. L. Lescun

The effect of superphosphate fertiliser on digestible dry matter (DDM) and crude protein (CP) percentages of perennial ryegrass and subterranean clover was assessed on a long-term, grazed experiment in western Victoria. CP of both species increased significantly (3–6 units) where long-term average phosphorus (P) applications were 33 kg/ha.year compared with 1 kg/ha.year. CP of herbage was also greater on paddocks grazed at higher (9–23 ewes/ha) than lower (5–13 ewes/ha) stocking rates (1–3 units). DDM of subterranean clover significantly increased (8–10 units) with higher superphosphate applications but there was little effect on the DDM of perennial ryegrass. Long-term applications of superphosphate were associated with larger increases in both DDM and CP than if the same rate was applied in autumn of the year of measurement. For subterranean clover, 30 kg/ha of P applied to infertile soils (Olsen P 5 mg/kg) in autumn increased the DDM of herbage collected in September by only 4–6 units. The nutritive value of most volunteer pasture species also increased with higher superphosphate applications but the DDM of these species was usually inferior to perennial ryegrass. The results highlight the importance of monitoring nutritive value, pasture composition, and herbage production to quantify fully the likely effect of fertiliser applications on animal production.


Sign in / Sign up

Export Citation Format

Share Document