scholarly journals A novel polymorphism in the 5′ UTR of HvDEP1 is associated with grain length and 1000-grain weight in barley (Hordeum vulgare)

2020 ◽  
Vol 71 (8) ◽  
pp. 752
Author(s):  
Calum Watt ◽  
Gaofeng Zhou ◽  
Tefera Tolera Angessa ◽  
David Moody ◽  
Chengdao Li

The gene HvDEP1, on barley (Hordeum vulgare L.) chromosome 5H, encodes a γ-subunit of the heterotrimeric G-protein complex and was previously determined to be a candidate gene underlying a major quantitative trait locus for grain length. In the present study, we identified a 9 bp indel (insertion–deletion mutation) at position –84 bp from the start codon within a reported upstream open reading frame located in the 5′ UTR (untranslated region) and developed a diagnostic molecular marker. We also identified a 13 bp indel (–514 bp) in linkage disequilibrium that bridges an important regulatory motif. Using a doubled-haploid population and a barley diversity panel, we were able to show that the effects of these indels were environmentally stable and consistently delineated phenotypic groups based on grain length and 1000-grain weight. Genotypes represented by deletions at these two positions relative to the reference cv. Morex had consistently shorter grains, by 3.69–3.96%, and lower 1000-grain weight, by 2.38–4.21%, in a doubled-haploid population studied. Additionally, a diversity panel was tested but consistent differences were observed only for grain length, reinforcing literature indicating the importance of this gene for grain-length regulation. The frequency of the longer and heavier grained reference allele was higher in modern cultivars, suggesting that indirect selection for longer grain may have occurred through direct selection for grain yield via grain-weight improvement. These results indicate that grain length and 1000-grain weight in barley can be manipulated by targeting variation in gene promoters through marker-assisted selection.

Heredity ◽  
1990 ◽  
Vol 65 (1) ◽  
pp. 115-122 ◽  
Author(s):  
W Powell ◽  
R P Ellis ◽  
M Macaulay ◽  
J McNicol ◽  
B P Forster

2018 ◽  
Vol 97 (5) ◽  
pp. 1389-1406 ◽  
Author(s):  
Farshad Fattahi ◽  
Barat Ali Fakheri ◽  
Mahmood Solouki ◽  
Christian Möllers ◽  
Abbas Rezaizad

2020 ◽  
Vol 21 (11) ◽  
pp. 3960 ◽  
Author(s):  
Tao Liu ◽  
Lijun Wu ◽  
Xiaolong Gan ◽  
Wenjie Chen ◽  
Baolong Liu ◽  
...  

Thousand-grain weight (TGW) is a very important yield trait of crops. In the present study, we performed quantitative trait locus (QTL) analysis of TGW in a doubled haploid population obtained from a cross between the bread wheat cultivar “Superb” and the breeding line “M321” using the wheat 55-k single-nucleotide polymorphism (SNP) genotyping assay. A genetic map containing 15,001 SNP markers spanning 2209.64 cM was constructed, and 9 QTLs were mapped to chromosomes 1A, 2D, 4B, 4D, 5A, 5D, 6A, and 6D based on analyses conducted in six experimental environments during 2015–2017. The effects of the QTLs qTgw.nwipb-4DS and qTgw.nwipb-6AL were shown to be strong and stable in different environments, explaining 15.31–32.43% and 21.34–29.46% of the observed phenotypic variance, and they were mapped within genetic distances of 2.609 cM and 5.256 cM, respectively. These novel QTLs may be used in marker-assisted selection in wheat high-yield breeding.


Sign in / Sign up

Export Citation Format

Share Document