Evaluation of the usefulness of senescing agent potassium iodide for assessing inter-cultivar variation for drought tolerance in pearl millet [Pennisetum glaucum (L.) R.Br.]

2003 ◽  
Vol 43 (11) ◽  
pp. 1337 ◽  
Author(s):  
M. Ashraf ◽  
M. Arfan ◽  
A. Ahmad

Drought stress is an important limitation to the growth and grain yield of pearl millet in arid and semi-arid regions of the world. Potassium iodide, a senescing agent, was used as a screening tool for evaluating drought tolerance of 22 strains of pearl millet at the grain development stage (grain filling) under glasshouse conditions. In order to use potassium iodide as a selection method in breeding programs for improvement of drought tolerance, the technique was compared with some drought evaluating parameters such as water retention capability, osmotic adjustment, photosynthetic capacity and water-use efficiency. Application of a 0.3% solution of potassium iodide at anthesis was very effective in causing drought stress, and hence grain yield reduction, in pearl millet. It showed a significant association with water deficit in growth attributes such as fresh and dry weights of shoots, and grain yield. Osmotic adjustment, water retention capability (decrease in weight of excised leaves during 5-h drying period), photosynthetic rate, and single-leaf water-use efficiency (net CO2 assimilation rate/transpiration) did not show positive relationships with the degree of drought tolerance measured using potassium iodide spray or water-deficit treatment. A large amount of variation in drought tolerance observed in 22 lines of pearl millet can be of considerable practical value. For example, the 3 lines ICMP-83720, ICMV-9413 and ICMV-94472, ranked as highly drought tolerant on the basis of their overall growth and physiological performance, and could be of direct use under mild drought conditions.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1318 ◽  
Author(s):  
Zsuzsanna Farkas ◽  
Emese Varga-László ◽  
Angéla Anda ◽  
Ottó Veisz ◽  
Balázs Varga

The effects of simulated waterlogging, drought stress and their combination were examined in a model experiment in Martonvásár, Hungary, in 2018. Four modern winter wheat varieties (‘Mv Toborzó’ (TOB), ‘Mv Mambó’ (MAM), ‘Mv Karizma’ (KAR), ‘Mv Pálma’ (PAL)) and one old Hungarian winter wheat cultivar (‘Bánkúti 1201’ (BKT)) were tested. Apart from the control treatment (C), the plants were exposed to two different abiotic stresses. To simulate waterlogging (WL), plants were flooded at four leaf stage, while in the WL + D treatment, they were stressed both by waterlogging and by simulated drought stress at the early stage of plant development and at the heading stage, respectively. The waterlogging treatment resulted in a significant decrease in plant biomass (BKT, TOB), number of spikes (TOB), grain yield (BKT, TOB), water use (BTK) and water-use efficiency (TOB, MAM, PAL) compared to the controls. The combined treatment (WL + D) led to a significant decrease in plant height (BTK, MAM, KAR), number of spikes (BTK, TOB, MAM, KAR), thousand kernel weight (TOB), harvest index (BTK), biomass, grain yield, water-use efficiency (in all varieties) and water use (BKT, TOB, MAM, KAR) of the plants. The best water-use efficiency was observed for MAM; therefore, this genotype could be recommended for cultivation at stress prone areas. The varieties MAM, KAR and PAL also showed good adaptability.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dario Mantovani ◽  
Maik Veste ◽  
Dirk Freese

Black locust (Robinia pseudoacaciaL.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57 g L−1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land.


2016 ◽  
Author(s):  
◽  
Brett Naylor

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Drought is a huge concern for soybean growers across the world, and in the Midwestern US is the main limitation to grain yield. A way to protect against drought stress is for plants to use water more efficiently. Carbon isotope discrimination (CID) is a measured trait that is related to water-use efficiency (WUE), and can be used to screen genotypes for higher WUE. Several genotypes were studied in multiple greenhouse and field experiments with varying drought stress treatments. Genotypes exhibiting less CID were shown to have a higher WUE, and CID was related to WUE. The higher WUE genotypes also exhibited differences in photosynthetic traits, especially in their stomatal behavior to restrict water loss. In terms of grain yield, very few differences were observed between the genotypes. Thermal images to estimate canopy temperature and sap flow sensors to estimate field water use provided excellent insight into differences among watering treatments and genotypes for transpiration rates. This research demonstrates, that in soybean, CID can be used as a screening tool to select for higher WUE, and higher WUE is likely a result of increased stomatal restrictions to prevent water loss during periods of drought stress. However, these genotypes exhibiting less transpiration showed minimal, if any grain yield reduction. Further, whole field imaging can also be utilized to identify higher WUE genotypes, and sap flow sensors can be expected to estimate water use in the field. Both resulting in reduced labor and more efficient time use.


2018 ◽  
Vol 37 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Baozhen Hao ◽  
Qingwu Xue ◽  
Thomas H. Marek ◽  
Kirk E. Jessup ◽  
Jacob D. Becker ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Habteslase Teklu Tesfagiorgis ◽  
Woldeamlak Araia ◽  
N. N. Angiras

A field experiment was conducted at the experimental farm of Hamelmalo Agricultural College during summer 2017, to evaluate the agronomic, physiological, and biochemical performance of the collected Eritrean germplasm of pearl millet. A total of 16 accessions were tested, out of which 2 were improved varieties included as a check. The experiment was laid out in 4 x 4 Simple Lattice Design with Randomized Block using 4 replications with a gross plot size of 3.0 m x 1.2 m, row to row spacing of 75 cm and plant to plant spacing of 30 cm. The data collected were Agronomic parameters (growth, development, yield, and yield contributing characters); Physiological parameters (Relative water content and Water Use Efficiency); and Biochemical parameters (crude fat, crude fiber, protein content, TSS, and ash content). The data were analyzed using GENSTAT software and correlation analysis was worked to see the positive and negative contribution of agronomic, physiological, and biochemical attributes. The results of the study showed that Bariyay908 and Kona being statistically at par with Bariyay 910, Hagaz, Zibedi, Shleti, Delkata, Tokroray, and Kunama produced significantly higher grain yield. However, among these Baryay908 because of its superior agronomic characteristics, lower incidence of downy mildew, relatively higher water use efficiency and higher crude protein content were found to be comparatively superior to the check improved varieties Kona and Hagaz. Grain yield has shown a positive and significant correlation with harvest index, number of seeds per panicle, panicle length, leaf area and water use efficiency. These promising accessions need to be further tested for future breeding programs to develop varieties higher in productivity and resistant to downy mildew under semiarid conditions of Eritrea.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 369
Author(s):  
Muhammad Irfan Ahmad ◽  
Adnan Noor Shah ◽  
Jianqiang Sun ◽  
Youhong Song

Drought stress has been a great challenge for the sustainability of maize (Zea mays L.) production in arid and semi-arid regions. The utilization of drought-tolerant hybrids and proper irrigation regimes represent a management strategy to stabilize maize production under water-limited conditions. A two-year field experiment was conducted to assess the leaf gas exchange, growth, grain yield, and water use efficiency in two cultivars of maize, i.e., Zhengdan 958 (H1) and Zhongdan 909 (H2), under different water regimes, i.e., full irrigation (FI), reproductive irrigation (RI), and rainfed (RF). Plant samples were collected at different growth stages to measure the maize growth and development under the three irrigation regimes. The grain yield in RF was significantly reduced by 30.4% (H1) and 31.1% (H2); and the water use efficiency (WUE) by 8.5% (H1) and 9.3% (H2) compared with FI. On the other hand, irrigation application at the flowering stage was shown to significantly boost the grain yield by 40.3% (H1) and 25.5% (H2); and the WUE by 27.6% (H1) and 14.1% (H2) compared to RF. This indicated that H1 benefited more from irrigation use compared to H2. The improved grain yield through reproductive irrigation was due to the greater soil plant analysis development (SPAD), net photosynthesis, and biomass production when compared to zero irrigation. Zhengdan 958 was shown to be relatively more resistant to drought stress during flowering compared to Zhongdan 909. Thus, to achieve reliable maize production in Huaibei Plain, reproductive irrigation is recommended, combined with Zhengdan 958.


2017 ◽  
Vol 43 (6) ◽  
pp. 899 ◽  
Author(s):  
Ming HUANG ◽  
Zhao-Hui WANG ◽  
Lai-Chao LUO ◽  
Sen WANG ◽  
Ming BAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document