scholarly journals Effects of Drought Frequency on Growth Performance and Transpiration of Young Black Locust (Robinia pseudoacaciaL.)

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dario Mantovani ◽  
Maik Veste ◽  
Dirk Freese

Black locust (Robinia pseudoacaciaL.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57 g L−1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land.

2019 ◽  
Vol 39 (8) ◽  
pp. 1371-1386 ◽  
Author(s):  
Sen Meng ◽  
Yang Cao ◽  
Huiguang Li ◽  
Zhan Bian ◽  
Dongli Wang ◽  
...  

Abstract Wax, a hydrophobic structure that provides an effective waterproof barrier to the leaves, is an important drought adaptation trait for preventing water loss. However, limited knowledge exists regarding the molecular mechanisms underlying wax biosynthesis in trees. Here, PeSHN1, an AP2/ethylene response factor transcription factor, was isolated from a fast-growing poplar Populus × euramericana cv. ‘Neva’ clone. To study the potential biological functions of PeSHN1, transgenic 84K poplar (Populus alba × Populus glandulosa) plants overexpressing PeSHN1 were generated. PeSHN1 overexpression resulted in decreased transpiration, increased water-use efficiency (WUE) and increased drought tolerance. The transgenic poplar plants exhibited increased wax accumulation and altered wax composition, mainly because of a substantial increase in long-chain (>C30) fatty acids, aldehydes and alkanes. Gene expression analyses revealed that many genes involved in wax biosynthesis were induced in the PeSHN1 overexpression plants. In addition, chromatin immunoprecipitation-PCR assays and dual luciferase assays revealed that at least one of those genes, LACS2, is likely targeted by PeSHN1. Moreover, the PeSHN1 overexpression plants maintained higher photosynthetic activity and accumulated more biomass under drought stress conditions. Taken together, these results suggest that PeSHN1 regulates both WUE and drought tolerance in poplar by modulating wax biosynthesis and that altered PeSHN1 expression could represent a novel approach (altering the wax trait on leaf surfaces to increase WUE) for breeding drought-tolerant plants.


2016 ◽  
Vol 9 (1) ◽  
pp. 40 ◽  
Author(s):  
Novita Anggraini ◽  
Eny Faridah ◽  
Sapto Indrioko

Black locust (Robinia pseudoacacia) merupakan tanaman asli Amerika Utara dan telah tersebar ke Eropa dan Asia serta menjadi salah satu spesies yang digunakan untuk rehabilitasi lahan semiarid dan arid. Walau demikian, kemampuan adaptasi black locust pada daerah persebarannya cukup meresahkan disebabkan jenis ini memiliki potensi invasif yang cenderung menekan pertumbuhan tanaman asli setempat. Tujuan penelitian ini adalah untuk mempelajari pengaruh cekaman kekeringan berupa volume penyiraman dan interval penyiraman terhadap perilaku fisiologis dan pertumbuhan bibit black locust, serta untuk menganalisis tingkat toleransi black locust terhadap kekeringan melalui karakter efisiensi penggunaan air (WUE) dan kandungan klorofil. Perlakuan volume penyiraman berupa kapasitas lapang 30-40 % mewakili kondisi kekeringan dan kapasitas lapang 70-80 % mewakili kondisi air yang memadai, sementara periode interval penyiraman adalah 1 hari, 3 hari dan 7 hari. Metode analisis yang digunakan ialah analisis tren. Hasil yang diperoleh pada penelitian ini adalah semakin rendah volume penyiraman (KL 30-40 %) dan semakin lama interval penyiraman (ke 7 hari) maka fotosintesis, transpirasi, konduktansi stomata, serta pertumbuhan (tinggi, diameter, berat kering tajuk dan akar) akan semakin rendah, sementara untuk WUE dan kandungan klorofil semakin tinggi. Peningkatan WUE dan kandungan klorofil merupakan dua indikator bahwa black locust mampu beradaptasi (toleran) pada kondisi cekaman kekeringan. Dengan begitu, dapat disimpulkan bahwa penggunaan black locust dalam upaya reklamasi lahan kering perlu didahului studi khusus dan pertimbangan yang matang agar tidak membawa dampak invasif pada kehidupan mendatang.Kata kunci: black locust, cekaman kekeringan, jenis invasif, water use efficiency, kandungan klorofil. Effect of drought stress on physiological behavior and growth ofblack locust (Robinia pseudoacacia) seedlingsAbstractBlack locust (Robinia pseudoacacia) is a native species from North America and it has spread to Europe and Asia. Black locust is also one species used for land rehabilitation in semiarid and arid areas. However, adaptability of black locust on their distribution area is quite disturbing due to its invasive potential that tends to suppress the growth of native plants. The purpose of this study is to examine the effect of drought stress through watering volume and watering intervals treatments on physiological behavior and growth of black locust seedlings, and to analyze the level of black locust on drought tolerance through water use efficiency (WUE) character and chlorophyll content. The watering volumes are 30-40 % of field capacity representing drought conditions and 70-80 % of field capacity representing good water conditions, while the watering intervals are 1, 3 and 7 days. Trend analysis is used to analyze the data. The results indicate that the lower watering volume (30-40 %) and the longer the watering interval (for 7 days), the lower the photosynthesis and transpiration rate, stomatal conductance and growth (height, diameter, shoot dry weight and root) of plants, but the higher the WUE and chlorophyll content. Increasing WUE and chlorophyll content are two indicators indicating that black locust is able to adapt (tolerant) to drought stress situations. Therefore, the use of black locust for dry land reclamation requires special attention and careful strategy to avoid its invasive impact in the future.


2003 ◽  
Vol 43 (11) ◽  
pp. 1337 ◽  
Author(s):  
M. Ashraf ◽  
M. Arfan ◽  
A. Ahmad

Drought stress is an important limitation to the growth and grain yield of pearl millet in arid and semi-arid regions of the world. Potassium iodide, a senescing agent, was used as a screening tool for evaluating drought tolerance of 22 strains of pearl millet at the grain development stage (grain filling) under glasshouse conditions. In order to use potassium iodide as a selection method in breeding programs for improvement of drought tolerance, the technique was compared with some drought evaluating parameters such as water retention capability, osmotic adjustment, photosynthetic capacity and water-use efficiency. Application of a 0.3% solution of potassium iodide at anthesis was very effective in causing drought stress, and hence grain yield reduction, in pearl millet. It showed a significant association with water deficit in growth attributes such as fresh and dry weights of shoots, and grain yield. Osmotic adjustment, water retention capability (decrease in weight of excised leaves during 5-h drying period), photosynthetic rate, and single-leaf water-use efficiency (net CO2 assimilation rate/transpiration) did not show positive relationships with the degree of drought tolerance measured using potassium iodide spray or water-deficit treatment. A large amount of variation in drought tolerance observed in 22 lines of pearl millet can be of considerable practical value. For example, the 3 lines ICMP-83720, ICMV-9413 and ICMV-94472, ranked as highly drought tolerant on the basis of their overall growth and physiological performance, and could be of direct use under mild drought conditions.


2015 ◽  
Vol 33 (4) ◽  
pp. 679-687 ◽  
Author(s):  
M.Z. IHSAN ◽  
F.S. EL-NAKHLAWY ◽  
S.M. ISMAIL

ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.


2021 ◽  
Vol 78 (5) ◽  
Author(s):  
Guilherme Filgueiras Soares ◽  
Walter Quadros Ribeiro Júnior ◽  
Lucas Felisberto Pereira ◽  
Cristiane Andréa de Lima ◽  
Daiane dos Santos Soares ◽  
...  

2018 ◽  
Vol 36 (1) ◽  
pp. 7-13
Author(s):  
Melissa C. Smith ◽  
Richard N. Mack

Abstract Suitable plant water dynamics and the ability to withstand periods of low moisture input facilitate plant establishment in seasonally arid regions. Temperate bamboos are a major constituent of mixed evergreen and deciduous forests throughout temperate East Asia but play only an incidental role in North American forests and are altogether absent in the Pacific Northwest forest. Many bamboo species are classified as mesic or riparian, but none are considered drought tolerant. To assess their ability to withstand low water, we subjected five Asian temperate and one North American temperate bamboo species to three irrigation treatments: 100%, 50%, and 10% replacement of water lost through evapotranspiration. Plants were irrigated every four days over a 31-day period. Plant response to treatments was measured with stomatal conductance, leaf xylem water potentials, and intrinsic water use efficiency (iWUE). Pleioblastus distichus and Pseudosasa japonica showed significant reductions in conductance between high and low irrigation treatments. Sasa palmata had significantly lower stomatal conductance in all treatments. Pleioblastus chino displayed significantly higher iWUE in the mid irrigation treatment and Arunindaria gigantea displayed significantly lower iWUE than P. chino and S. palmata in the low irrigation treatment. The Asian bamboo species examined here tolerate low water availability and readily acclimate to different soil moisture conditions. Index words: Temperate bamboos, irrigation response, stomatal conductance, intrinsic water use efficiency. Species used in this study: Giant Cane [Arundinaria gigantea (Walt.) Muhl.]; Pleioblastus chino (Franchet & Savatier) Makino; Pleioblastus distichus (Mitford) Nakai; Pseudosasa japonica (Makino); Sasa palmata (Bean) Nakai.


Sign in / Sign up

Export Citation Format

Share Document