Surveys of spraying practices for banana leaf disease control in New South Wales, and an assessment of disease control based on leaf retention at harvest in July

1992 ◽  
Vol 32 (2) ◽  
pp. 211 ◽  
Author(s):  
RN Allen ◽  
AA Akehurst ◽  
G Ireland

Commercial 'Williams' banana plantations were surveyed at random on the North Coast of New South Wales during July 1990 and 1991, to determine spraying practices for leaf disease control and their efficacy in relation to leaf retention at harvest. A climatic index (CIP), based on temperature and wetness, indicated environmental conditions were conducive to leaf diseases caused by Mycosphaerella musicola and M. musae over summer and autumn 1990 but were less conducive in 1991, especially in autumn. In 1990, 5 of 44 plantations surveyed on the Mid North Coast (MNC) received no fungicide sprays; the remainder received 1-5 sprays of petroleum oil or oil mixed with propiconazole (mean 3.0 � 1.3) in December-May. Two plantations were sprayed using misting machines, the other 37 were aerially sprayed. The average numbers of leaves remaining on plants with mature bunches ranged from 0.3 to 8.3 (mean 4.7 � 2.2). A spray frequency model indicated that leaves per plant at harvest in July increased with numbers of sprays applied and decreased with increasing damage from wind and frost (r2 = 0.49; d.f. = 40; P<0.01). Another model based on the accumulated CIP from October to July (+CIP), adjusted for the timing and fungicidal effects of each spray, indicated that leaves per plant at harvest decreased with increasing +CIP, and wind and frost damage (r2 = 0.53; d.f. = 40; P<0.01). In 1991,4 of 38 plantations on the MNC and 3 of 32 on the Far North Coast (FNC) received no sprays; the remainder received 1-9 sprays of oil, oil + propiconazole, or oil + protectant fungicide mixtures. Fewer sprays were applied on the MNC in 1991 than 1990, but the timing of sprays remained unchanged. More sprays were applied on the FNC than MNC in 1991, and sprays were applied from December to July. Leaves per plant varied from 4.2 to 12.1 (mean 8.3 � 2.0). The spray frequency model from 1990 predicted leaves per plant in 1991 poorly (r2 = 0.17; d.f. = 68; P<0.01) and with substantial bias, whereas, the CIP model predicted leaves per plant for the MNC and FNC well (r2 = 0.41; d.f. = 68; P<0.01) and without bias. Observations in 1991 on the 70 surveyed plantations indicated that leaf retention also decreased with increasing damage by burrowing nematode (Radopholus similis) and banana weevil borer (Cosmopolites sordidus), increasing latitude of the plantation, and decreasing electrical conductivity of the soil solution. These variables accounted for a further 21% of the variation in leaves per plant observed in 1991. Leaf retention was not significantly (P>0.05) related to soil pH or to spraying method (aerial v. ground).


1996 ◽  
Vol 36 (3) ◽  
pp. 299 ◽  
Author(s):  
TS Andrews ◽  
RDB Whalley ◽  
CE Jones

Inputs and losses from Giant Parramatta grass [GPG, Sporobolus indicus (L.) R. Br. var. major (Buse) Baaijens] soil seed banks were quantified on the North Coast of New South Wales. Monthly potential seed production and actual seed fall was estimated at Valla during 1991-92. Total potential production was >668 000 seeds/m2 for the season, while seed fall was >146000 seeds/m2. Seed fall >10000 seeds/m2.month was recorded from January until May, with further seed falls recorded in June and July. The impact of seed production on seed banks was assessed by estimating seed banks in the seed production quadrats before and after seed fall. Seed banks in 4 of the 6 sites decreased in year 2, although seed numbers at 1 damp site increased markedly. Defoliation from mid-December until February, April or June prevented seed production, reducing seed banks by 34% over 7 months. Seed banks in undefoliated plots increased by 3300 seeds/m2, although seed fall was estimated at >114 000 seeds/m2. Emergence of GPG seedlings from artificially established and naturally occurring, persistent seed banks was recorded for 3 years from bare and vegetated treatment plots. Sown seeds showed high levels of innate dormancy and only 4% of seeds emerged when sown immediately after collection. Longer storage of seeds after collection resulted in more seedlings emerging. Estimates of persistent seed banks ranged from 1650 to about 21260 seeds/m2. Most seedlings emerged in spring or autumn and this was correlated with rainfall but not with ambient temperatures. Rates of seed bank decline in both bare and vegetated treatment plots was estimated by fitting exponential decay curves to seed bank estimates. Assuming no further seed inputs, it was estimated that it would take about 3 and 5 years, respectively, for seed banks to decline to 150 seeds/m2 in bare and vegetated treatments.



Oceania ◽  
1957 ◽  
Vol 27 (3) ◽  
pp. 190-209 ◽  
Author(s):  
Malcolm J. C. Calley


Mankind ◽  
2009 ◽  
Vol 2 (4) ◽  
pp. 88-91
Author(s):  
W. J. Enright


2021 ◽  
Author(s):  
David Milledge ◽  
Norman Graham ◽  
Jill Smith

ABSTRACT A population of the Northern Long-nosed Potoroo Potorous tridactylus tridactylus in Tyagarah Nature Reserve on the far north coast of New South Wales was first recorded in 1985. In 1992, a cage-trapping study captured 15 individuals in the central section of the reserve and the population was estimated at 80–90 individuals at that time. A subsequent cage-trapping study in 2004 captured four individuals in the southern section of the reserve, but further cage- and camera-trapping surveys in 2009 and 2012 failed to detect any individuals. Additional camera-trapping surveys between 2012 and 2015 and more intensive surveys between 2015 and 2016 also failed to detect any individuals. The lack of detections from targeted surveys over seven years between 2009 and 2016 suggests that the Tyagarah population of the subspecies has been lost. Reasons for this loss are unclear but may be due to a combination of factors including isolation of the reserve by urban development and highway upgrades, a lack of fire for 40 years, competition for food with the local population of the Australian Brush-turkey Alectura lathami, prolonged drought and possibly, predation by the Red Fox Vulpes vulpes and non-target effects of predator control programs.





Zootaxa ◽  
2006 ◽  
Vol 1222 (1) ◽  
pp. 1 ◽  
Author(s):  
LAUREN E. HUGHES ◽  
JAMES K. LOWRY

Nine new species of epibenthic amphipods are described from the Solitary Islands, mid-north coast, New South Wales, Australia. Material was collected on natural habitats and from a range of small plastic artificial substrates. Protohyale pusilla (Chevreux, 1907) is reported from Australia for the first time. The subgenus Telsosynopia Karaman, 1986 is given generic status and Regalia juliana Lowry & Springthorpe, 2005 is transferred to Tepidopleustes in the pleustid subfamily Austropleustinae. New species include: Protohyale solitaire sp. nov. (Hyalidae); Ericthonius rodneyi sp. nov. and Ericthonius forbesii sp. nov. (Ischyroceridae); Liljeborgia polonius sp. nov. (Liljeborgiidae); Elasmopus arrawarra sp. nov. and Hoho cornishi sp. nov. (Melitidae); Gammaropsis legoliath sp. nov. (Photidae); Tepidopleustes coffsiana sp. nov. (Pleustidae); and Telsosynopia trifidilla sp. nov. (Synopiidae).



1997 ◽  
Vol 166 (6) ◽  
pp. 290-293 ◽  
Author(s):  
Tim J Sladden ◽  
Alan R Hickey ◽  
Thérèse M Dunn ◽  
John R Beard


1997 ◽  
Vol 37 (4) ◽  
pp. 439 ◽  
Author(s):  
T. S. Andrews ◽  
C. E. Jones ◽  
R. D. B. Whalley

Summary. Four experiments were conducted to determine the effects of temperature, light and leaf extract solutions on the germination of Giant Parramatta grass [GPG, Sporobolus indicus (L.) R. Br. var. major (Buse) Baaijens] collected from a population on the North Coast of New South Wales. In the first experiment, seeds were subjected to one of a range of temperature combinations immediately after collection and again after 8 and 27 weeks. Germination was restricted to a narrow range of alternating temperatures with a peak at 35°C day/15°C night when seeds were tested immediately after collection. More seeds germinated when the samples had been stored, although germination remained depressed at constant temperatures. These data indicate that freshly collected GPG seeds are subject to primary dormancy and that few would germinate in the field immediately after seed fall. In a second experiment, seeds were buried beneath leaf litter in a pasture immediately after collection. After 7 months, the seeds were exhumed and subjected to either constant (20°C) or alternating (35/15°C) temperatures in either full light, reduced red:far-red (R : FR) light or dark treatments. Over 95% of GPG seeds germinated when subjected to alternating temperatures, regardless of light treatment. At constant temperatures, 97% of seeds germinated under full light, 59% at reduced R : FR light and <1% in dark treatments. A germination response to alternating temperatures and/or light treatments has been reported in pasture weeds and may be an adaptation to detecting gaps in the pasture canopy. Consequently, the germination of GPG in a pasture may be manipulated to some extent by altering the amount of pasture cover using grazing management, mowing and fertiliser applications. In experiment 3, leaves from a range of coastal grasses were mixed with water and the solutions were used to germinate GPG seeds. Solutions extracted from setaria (Setaria sphacelata) leaves completely inhibited GPG germination while 27% of GPG seeds germinated when imbibed with kikuyu leaf extract solution. Solution extracted from carpet grass (Axonopus affinis) leaves had the least effect on GPG germination. In experiment 4, the effects of solutions that had been leached from the leaves of either setaria or carpet grass on seed germination, and root and shoot lengths of GPG seedlings were compared. Germination was less inhibited by leachate solutions compared with the extract solutions used in experiment 3. Seedlings in setaria leachates had significantly shorter roots and shoots than both those germinated in carpet grass leachates and control seedlings. This may explain, at least in part, why carpet-grass-based pastures are readily infested with GPG while setaria-based pastures are relatively resistant to infestation. The potential for allelopathic interactions between GPG and setaria to be fully utilised to reduce the abundance of GPG in coastal New South Wales pastures is discussed.



1971 ◽  
Vol 11 (50) ◽  
pp. 307 ◽  
Author(s):  
GJ Murtagh

The effectiveness of chemical seedbed preparation for sod-sown oats was studied using varying intervals between spraying and sowing. Four herbicides were compared in a second experiment. Both experiments were conducted on paspalum (Paspalum dilatatum) dominant pastures on red basaltic soil on the North Coast of New South Wales. Herbicides were most effective when applied at 6.7 kg acid equivalent a hectare. At this rate, the highest yields of dry matter and nitrogen were obtained when there was a three-week interval and considerably less when there was no interval. A mixture of 2,2-DPA (2,2-dichloropropionic acid) and amitrole (3-amino-1,2,4-triazole) was more effective than 2,2-DPA alone with a three-week spraying interval but there was no difference with a six-week interval. Both amitrole and a mixture of amitrole and ammonium thiocyanate were ineffective for chemical seedbed preparation on paspalum pastures;



Sign in / Sign up

Export Citation Format

Share Document