Sorption of a Xenobiotic Contaminant in Clean and Petroleum-Contaminated Soil: Roles of Water and Xenobiotic Size

2006 ◽  
Vol 3 (2) ◽  
pp. 124
Author(s):  
Tiona R. Todoruk ◽  
Cooper H. Langford

Environmental Context.Soil uptake of xenobiotics (e.g. pesticides) can be a complex phenomenon where it is useful to distinguish readily reversible sorption from longer-term retention. A scheme for doing this using fluorescence detection is presented here, along with application to uptake of a model compound in clean and oil-contaminated soils. Both the wetting of the soil and the size of the xenobiotic seem to be important. The present data concern uptake. Desorption is expected to exhibit dependencies on similar factors. The data have implications for understanding persistence. Abstract.Description of sorption of xenobiotics (e.g. pesticides) into soils requires identification of at least two kinetic components. In the present work, the distinction between ‘labile’ (readily reversible) and ‘non-labile’ (not reversible) uptake was extended, introducing a fluorescence-based method using 9-anthracenepropionic acid as a probe molecule. Study of clean, oil-contaminated wettable, and water-repellent oil-contaminated soils has given new perspectives into the role that water plays in xenobiotic uptake. Non-labile uptake is unimportant in the water-repellent soils; however, non-labile components are observed in both clean and wettable oil-contaminated samples, supporting earlier suggestions that water plays a role in non-labile uptake processes. A soil pre-exposed to water exhibited different labile sorption behavior from one where xenobiotic was added simultaneously with water to an air-dried soil. The comparatively rapid non-labile component of uptake (3 days) of 9-anthracenepropanoic acid by a clean soil contrasted with much longer times in earlier studies of 2,4-D and atrazine. This pointed to another factor influencing the sorption phenomenon. Literature data supports a suggestion that the non-labile component of xenobiotic sorption may be more strongly influenced by the size of the xenobiotic than by the structure (e.g. polarity) of the xenobiotic or soil composition.


1991 ◽  
Vol 1 (4) ◽  
pp. 391-406 ◽  
Author(s):  
Andrew C. Middleton ◽  
David V. Nakles ◽  
David G. Linz


2005 ◽  
Vol 71 (1) ◽  
pp. 580-586 ◽  
Author(s):  
Norika Meguro ◽  
Yumiko Kodama ◽  
Maria-Trinidad Gallegos ◽  
Kazuya Watanabe

ABSTRACT PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil.





1999 ◽  
Vol 79 (2) ◽  
pp. 367-380 ◽  
Author(s):  
Julie L. Roy ◽  
William B. McGill ◽  
Marvin D. Rawluk

Some soils develop severe water repellency several years or decades following oil contamination. We previously reported on the characteristics of three such soils. Here we report on the characteristics of putative water-repellent substances in them. We examined the effectiveness of various polar, nonpolar and amphiphilic solvents for removal of water-repellent substances in three nonwettable soils. Only the amphiphilic solvent mixture isopropanol/14.8 M ammonia (7:3, vol/vol) (IPA/NH4OH) completely eliminated soil water repellency in all three soils. We thus define putative water-repellent substances as those substances whose removal from soil by IPA/NH4OH removes water repellency. High-resolution CPMAS 13C-NMR spectroscopy and thermal desorption followed by conventional gas chromatography/mass spectroscopy with electron impact ionization (GC/EI/MS) and GC/MS with chemical ionization (GC/CI/MS) were used to characterize extracted putative water-repellent substances. We conclude that: (i) the identified representatives of these substances consist mostly of homologous series of long-chain and polycyclic aliphatic organic compounds; namely, n-fatty acids, n-alkanes, and cycloalkanes, and that (ii) they are of petroleum origin rather than plant or microbial origin. Key words: Soil hydrophobicity, petroleum hydrocarbons, soil water repellency, amphiphilic solvents, crude oil, nonwettable soil



2021 ◽  
Author(s):  
Samuel Beal ◽  
Ashley Mossell ◽  
Jay Clausen

The study objectives were to determine the effectiveness of Fenton’s Reagent and Modified Fenton’s Reagent in reducing Total Petroleum Hydrocarbon (TPH) concentrations in petroleum-contaminated soil from McMurdo Station, Antarctica. Comparisons of the contaminated soils were made, and a treatability study was completed and documented. This material was presented at the Association for Environmental Health and Sciences Foundation (AEHS) 30th Annual International Conference on Soil, Water, Energy, and Air (Virtual) on March 25, 2021.





2011 ◽  
Vol 57 (No. 8) ◽  
pp. 372-380 ◽  
Author(s):  
L. Trakal ◽  
M. Komárek ◽  
J. Száková ◽  
V. Zemanová ◽  
P. Tlustoš

The aim of this study was to evaluate metals (Cd, Cu, Pb and Zn) sorption behavior after biochar application into a metal-contaminated soil. Additionally, two different types of biochar originated from the same organic material (contaminated and uncontaminated) at different application rates (1% and 2% w/w) were evaluated as a novelty of the experiment. Batch sorption/desorption experiments were established to compare the sorption behavior of metals originating from single- and multi-element solutions. Zinc as one of the main contaminants in the studied soil was easily desorbed in the presence of Cu, Pb and to a lesser extent by Cd. This desorption was reduced after biochar application. The obtained results proved the different sorption behavior of metals in the single-metal solution compared to the multi-metal ones due to competition effect. Moreover, during multi-element sorption, Zn was significantly desorbed. The applied biochar enhanced Cu and Pb sorption and no changes were observed when contaminated and uncontaminated biochar was used. Furthermore, the application rate (1% and 2% w/w) had no effect as well. In summary, it is needed to point out that the applied rates of biochars were insufficient for metal immobilization in such contaminated soils.



2017 ◽  
Author(s):  
Charlotte Marchand ◽  
Fabio Kaczala ◽  
Yahya Jani ◽  
William Hogland

Underground storage tanks uses for waste cars draining contain many hazardous materials including hydrocarbons. These compounds pose a significant threat to the environment and affect negatively the health of living. Phytoremediation is an environmental friendly method used during the last few decades to eliminating organics pollutants from soil, sediment and water. The remediation capability of alfalfa (Medicago sativa) to treat petroleum-contaminated soil from an old car scrap yard in Nybro, Sweden was further investigated using greenhouse pot-scale experiments. After five months, alfalfa survival capacity and dry biomass were significantly lower in contaminated soil (CS) in comparison to non-contaminated soil (NCS). Only 5% of plants survived in CS and petroleum hydrocarbon C10-C50 content in planted treatment were not statistically lower in comparison to the unplanted treatment. Further studies are in process to evaluate the possible degradation of hydrocarbons using organic amendment



Sign in / Sign up

Export Citation Format

Share Document