scholarly journals Biochar application to metal-contaminated soil: Evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment

2011 ◽  
Vol 57 (No. 8) ◽  
pp. 372-380 ◽  
Author(s):  
L. Trakal ◽  
M. Komárek ◽  
J. Száková ◽  
V. Zemanová ◽  
P. Tlustoš

The aim of this study was to evaluate metals (Cd, Cu, Pb and Zn) sorption behavior after biochar application into a metal-contaminated soil. Additionally, two different types of biochar originated from the same organic material (contaminated and uncontaminated) at different application rates (1% and 2% w/w) were evaluated as a novelty of the experiment. Batch sorption/desorption experiments were established to compare the sorption behavior of metals originating from single- and multi-element solutions. Zinc as one of the main contaminants in the studied soil was easily desorbed in the presence of Cu, Pb and to a lesser extent by Cd. This desorption was reduced after biochar application. The obtained results proved the different sorption behavior of metals in the single-metal solution compared to the multi-metal ones due to competition effect. Moreover, during multi-element sorption, Zn was significantly desorbed. The applied biochar enhanced Cu and Pb sorption and no changes were observed when contaminated and uncontaminated biochar was used. Furthermore, the application rate (1% and 2% w/w) had no effect as well. In summary, it is needed to point out that the applied rates of biochars were insufficient for metal immobilization in such contaminated soils.


2011 ◽  
Vol 356-360 ◽  
pp. 63-69
Author(s):  
Liang Peng Yi ◽  
Zu Wei Wang

In order to use the Cd-contaminated saline soil, experiments have been carried out to analyze the differences among effects of three salts on cadmium accumulation capacities of Brassica Napus in Cd-contaminated soil, thus to figure out the phytoremediation effects of planting Brassica Napus in different types of Cd-contaminated saline soils. Brassica Napus(a cadmium hyperaccumulator plant) has been as the research plant, the Brassica Napus was planted in Cd-contaminated soils (Cd: 10 mg•kg-1) with different salt concentrations(0 g•kg-1, 2g•kg-1,4 g•kg-1 and 6 g•kg-1) for 60 days as required by the greenhouse pot soil culture experiment, thus to study the bioconcentration factor(BCF) of Brassica Napus on Cd and the effects of Brassica Napus on the changes of concentrations in the shoots and roots. The three main salts in the soil, namely, sodium chloride, sodium sulfate and sodium carbonate, were chosen as the analysis and research objects. The results showed that the soil containing sodium carbonate inhibited the Brassica Napus from absorbing Cd in the soil, so did the soil containing sodium sulfate, however, the effect was not so obvious as that of the soil containing sodium carbonate. However, the soil containing sodium chloride had little impact on Cd absorption of the Brassica Napus that it could only slightly promote the cadmium accumulation capacities of Brassica Napus under a very high concentration, In different types of saline soils, there were significant differences among the effects of different salts on cadmium accumulation capacities of Brassica Napus, the sodium chloride in the soil had little impact on cadmium accumulation capacities of the roots of Brassica Napus, however, it could enhance the cadmium accumulation capacities of the shoots of Brassica Napus; the sodium carbonate in the soil could significantly inhibit the shoots and roots of Brassica Napus from accumulating the cadmium, therefore, it was not conducive for the Brassica Napus to accumulate cadmium.



2017 ◽  
Vol 5 (21) ◽  
Author(s):  
Marco Antonio Rogel-Hernandez ◽  
Gabriela Guerrero ◽  
Clara Ivette Rincón-Molina ◽  
Víctor Manuel Ruiz-Valdiviezo ◽  
Crhistian Cisneros-Pérez ◽  
...  

ABSTRACT Acinetobacter lactucae OTEC-02 was isolated from hydrocarbon-contaminated soils. Whole-genome sequence analysis was performed to learn more about the strain’s ability to degrade different types of recalcitrant toxic monoaromatic hydrocarbons. The genome of this bacterium revealed its genomic properties and versatile metabolic features, as well as a complete prophage.



1998 ◽  
Vol 37 (8) ◽  
pp. 111-118 ◽  
Author(s):  
Ick-Tae Yeom ◽  
Mriganka M. Ghosh

Batch experiments were conducted to determine the effects of Triton X-100, a nonionic phenolic ethoxylate surfactant, on the biodegradation of soil-bound naphthalene and phenanthrene. Two different types of soils, one contaminated with polynuclear aromatic hydrocarbons (PAHs) for different lengths of time, 2 days to 10 months, in the laboratory and the other, a field-contaminated soil from a manufactured gas plant (MGP) site, were used. Biodegradation of PAHs was measured by monitoring the 14CO2 production for the artificially contaminated soils and the residual PAHs in soil phase for the MGP soil. Without adding surfactant, the mineralization rate of phenanthrene was significantly smaller in the 1 0-month contaminated soil compared to that in the 2-day contaminated soil. Presumably, mineralization was mass-transfer limited in the soil with longer contamination period. Triton X-100 significantly enhanced mineralization in the 10 month-old soil but none in the 2-day old soil. The MGP soil, weathered over 2-3 decades, exhibited even greater enhancement of mineralization. Mineralization of PAHs in aged soils appears to be controlled by mass transfer rather than the rate of biodegradation. Surfactants increase the rate of release of soil-bound contaminant and thus help promote biodegradation.



2017 ◽  
Vol 26 (3) ◽  
pp. 79-89 ◽  
Author(s):  
Maja Radziemska

Abstract The present study was designed to assess phytostabilization strategies for the treatment of soil co-contaminated by increasing levels of copper with the application mineral amendments (chalcedonite, zeolite, dolomite). From the results it will be possible to further elucidate the benefits or potential risks derived from the application of different types of mineral amendments in the remediation of a copper contaminated soil. A glasshouse pot experiment was designed to evaluate the potential use of different amendments as immobilizing agents in the aided phytostabilization of Cu-contaminated soil using ryegrass (Lolium perenne L.). The content of trace elements in plants and total in soil, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of L. perenne were significantly different in the case of applying mineral amendments to the soil, as well as increasing concentrations of copper. The greatest average above-ground biomass was observed for soil amended with chalcedonite. In this experiment, all analyzed metals accumulated predominantly in the roots of the tested plant. In general, applying mineral amendments to soil contributed to decreased levels of copper concentrations.



2021 ◽  
Author(s):  
Umeed Ali ◽  
Muhammad Shaaban ◽  
Saqib Bashir ◽  
Muhammad Afzal Chhajro ◽  
Li Qian ◽  
...  

Abstract Contamination of soils by nickel (Ni) has become a serious environmental problem throughout the world, and this substance wields dangerous effects on the ecosystem and food chain. A pot experiment was conducted to examine the effect of rice straw (RS), rice straw biochar (BI) and calcite (CC) at 1% and 2% application rates in a Ni contaminated soil. The objective was to potentially stabilize Ni and reduce its bioavailability to spinach (Spinacia Oleracea L.). Spinach plants were grown in a Ni contaminated Ultisol (commonly known as a red clay soil). Physiological results indicated that a BI 2% application rate significantly increased the photosynthetic rate by 4-18.6 µmol m2 S− 1 and transpiration rate by 1.7–8.9 mmol m2 S− 1. Similarly, growth parameters for root and shoots dry biomass increased 1.7- and 6.3-fold, respectively, while essential nutrients were enhanced in the spinach plant compared to those in the untreated soil (CK). Moreover, adding amendments significantly decreased CaCl2 extractable Ni by 62.5% 94.1%, and 87.2%, while the toxicity characteristics leaching procedure (TCLP) fell by 26.7%, 47.8%, and 41.7% when using RS, BI and CC, respectively, at 2% compared to CK. The Ni concentrations in the spinach roots declined by 51.6%, 73.3% and 68.9%, and in the shoots reduced by 54.1%, 76.7% and 70.8% for RS, BI and CC, at a 2% application rate, respectively. Bio-concentration factor (BCF) and translocation factor (TF) dropped significantly by as much as 72.7% and 20%, for BI 2% application rate. Results of the present study clearly indicated that biochar potential soil amendments for Ni stabilization, thereby reducing its bioavailability in the Ni contaminated soil. This process enhanced the safety of food to be consumed and mitigated security risks.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhangwei Li ◽  
Man-man Zhou ◽  
Weidian Lin

It was believed that when hydroxyapatite (HAP) was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size of HAP (nHAP) and micrometer particle size of HAP (mHAP) induced metal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensisL.) uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying inin situremediation technology.



2018 ◽  
Vol 5 (11) ◽  
pp. 181328 ◽  
Author(s):  
Alaa Hasan Fahmi ◽  
Abd Wahid Samsuri ◽  
Hamdan Jol ◽  
Daljit Singh

Biochars have been successfully used to reduce bioavailability and leaching of heavy metals in contaminated soils. The efficiency of biochar to immobilize heavy metals can be increased by reducing the particle size, which can increase the surface area and the cation exchange capacity (CEC). In this study, the empty fruit bunch biochar (EFBB) of oil palm was separated into two particle sizes, namely, fine (F-EFBB < 50 µm) and coarse (C-EFBB > 2 mm), to treat the contaminated soil with Cd and Pb. Results revealed that the addition of C-EFBB and F-EFBB increased the pH, electrical conductivity and CEC of the contaminated soil. The amounts of synthetic rainwater extractable and leachable Cd and Pb significantly decreased with the EFBB application. The lowest extractable and leachable Cd and Pb were observed from 1% F-EFBB-treated soil. The amount of extractable and leachable Cd and Pb decreased with increasing incubation times and leaching cycles. The application of F-EFBB to Cd and Pb-contaminated soil can immobilize the heavy metals more than that of C-EFBB. Therefore, the EFBB can be recommended for the remediation of heavy metal-contaminated soils, and a finer particle size can be applied at a lower application rate than the coarser biochar to achieve these goals.



2021 ◽  
Vol 13 (22) ◽  
pp. 12742
Author(s):  
Mahrous Awad ◽  
Mahmuod M. El-Sayed ◽  
Xiang Li ◽  
Zhongzhen Liu ◽  
Syed Khalid Mustafa ◽  
...  

Depending on the geochemical forms, heavy metal (HM) accumulation is one of the most serious environmental problems in the world and poses negative impacts on soil, plants, animals, and humans. Although the use of biochar to remediate contaminated soils is well known, the huge quantities of waste used and its recycling technique to sustain soil in addition to its use conditions are determinant factors for its characteristics and uses. A pot experiment was conducted in a completely randomized block design to evaluate metal forms and their availability under the application of garden waste biochar (GB) pyrolyzed at different temperatures, and a sequential extraction procedure was designed to fractionate Pb, Cd, Zn, and Cu of the contaminated soil. The results show that the TCLP-extractable Pb, Cd, Zn, and Cu were significantly decreased depending on the biochar addition rate, pyrolysis temperature, and tested metal. The acid extractable fraction was significantly decreased by 51.54, 26.42, 16.01, and 74.13% for Pb, Cd, Zn, and Cu, respectively, at the highest application level of GB400 compared to untreated pots. On the other hand, the organic matter bound fraction increased by 76.10, 54.69, 23.72, and 43.87% for the corresponding metals. The Fe/Mn oxide bound fraction was the predominant portion of lead (57.25–62.84%), whereas the acid fraction was major in the case of Cd (58.06–77.05%). The availability of these metals varied according to the application rate, pyrolysis temperature, and examined metals. Therefore, the GB is a nominee as a promising practice to reduce HM risks, especially pyrolyzed at 400 °C by converting the available fraction into unavailable ones.



Nativa ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 301
Author(s):  
Thiago Martins Machado ◽  
Monyse Fin Barbosa ◽  
Adelina Vitória Servelhere de Rezende ◽  
Ronan Sauer Bueno

A Ramulária é uma das principais doenças fungicas do algodoeiro, trazendo consequências graves para sua produtividade e qualidade de fibras. Com o intuito de abater os gastos e melhorar os parâmetros da aplicação, o trabalho tem por objetivo avaliar diferentes tipos de pontas de jato cônico e pingente, variando a taxa de aplicação e velocidade na pulverização do algodoeiro. Foram utilizadas pontas de jato cone vazio e cheio de diferentes fabricantes e também pingente associado a ponta cone vazio. As velocidades de deslocamento do pulverizador avaliadas foram 20 e 27 km h-1. As taxas de aplicações foram de 50 e 80 L ha-1. Os parâmetros avaliados foram: DMV, amplitude relativa (dispersão), volume, densidade e cobertura. O DMV foi satisfatório para todos os tratamentos. A ponta P2 obteve resultados inferiores nos parâmetros densidade de gotas, DMV e dispersão. Na velocidade de 27 km h-1 os parâmetros volume de aplicação, densidade e cobertura obtiveram melhores resultados em comparação com a velocidade de 20 km h-1. A taxa de aplicação mais elevada melhorou os parâmetros de qualidade de aplicação na densidade de gotas, cobertura e volume. O acessório pingente não obteve resultado significativo para densidade, dispersão, volume e cobertura na cultura do algodoeiro.Palavras-chave: algodão, qualidade de gotas, tecnologia de aplicação. CONE TYPE NOZZLES WITH VARIATION OF SPRAY RATE AND SPEED IN COTTON CULTURE ABSTRACT:Ramularia is one of the main fungal diseases of cotton, with serious consequences for its productivity and fiber quality. In order to reduce costs and improve the parameters of the application, the objective of this work is to test different types of conical and pendant jet tips, varying the rate of application and speed of cotton spraying. We used empty cone tips filled with different manufacturers and also pendant associated with empty cone tip The velocities evaluated were 20 and 27 km h-1. The application rates were 50 and 80 L ha-1. The parameters evaluated were: DMV, relative amplitude (dispersion), volume, density and coverage. DMV was satisfactory for all treatments. The full cone jet tip obtained lower results in the parameters of droplet density, DMV and dispersion. At the top speed the parameters application volume, density and coverage obtained better results compared to the lowest speed. The higher application rate improved the application quality parameters in droplet density, coverage and volume. The pendant accessory did not obtain significant results for density, dispersion, volume and coverage in the cotton crop.Keywords: cotton, drops quality, application technology.



2020 ◽  
Vol 66 (No. 9) ◽  
pp. 468-476
Author(s):  
Miroslav Jursík ◽  
Martin Kočárek ◽  
Michaela Kolářová ◽  
Lukáš Tichý

Six sunflower herbicides were tested at two application rates (1N and 2N) on three locations (with different soil types) within three years (2015–2017). Efficacy of the tested herbicides on Chenopodium album increased with an increasing cation exchange capacity (CEC) of the soil. Efficacy of pendimethalin was 95%, flurochloridone and aclonifen 94%, dimethenamid-P 72%, pethoxamid 49% and S-metolachlor 47%. All tested herbicides injured sunflower on sandy soil (Regosol) which had the lowest CEC, especially in wet conditions (phytotoxicity 27% after 1N application rate). The highest phytotoxicity was recorded after the application of dimethenamid-P (19% at 1N and 45% at 2N application rate). Main symptoms of phytotoxicity were leaf deformations and necroses and the damage of growing tips, which led to destruction of some plants. Aclonifen, pethoxamid and S-metolachlor at 1N did not injure sunflower on the soil with the highest CEC (Chernozem) in any of the experimental years. Persistence of tested herbicides was significantly longer in Fluvisol (medium CEC) compared to Regosol and Chernozem. Dimethenamid-P showed the shortest persistence in Regosol and Chernozem. The majority of herbicides was detected in the soil layer 0–5 cm in all tested soils. Vertical transport of herbicides in soil was affected by the herbicide used, soil type and weather conditions. The highest vertical transport was recorded for dimethenamid-P and pethoxamid (4, resp. 6% of applied rate) in Regosol in the growing season with high precipitation.  



Sign in / Sign up

Export Citation Format

Share Document