scholarly journals Toxicity of engineered copper (Cu0) nanoparticles to the green alga Chlamydomonas reinhardtii

2016 ◽  
Vol 13 (3) ◽  
pp. 457 ◽  
Author(s):  
Emanuel Müller ◽  
Renata Behra ◽  
Laura Sigg

Environmental context Engineered copper nanoparticles are presently under development for various uses and may thus be finally released into the aquatic environment. Copper is well known to be both an essential and a toxic element for aquatic organisms. Here, we investigate the toxicity of copper nanoparticles to a green alga and compare it with the toxicity of dissolved copper. Abstract The toxicity of carbon-coated copper nanoparticles (CuNPs) to the unicellular green alga Chlamydomonas reinhardtii was investigated and compared with effects of dissolved Cu2+. The CuNPs with an original size of 6–7nm rapidly agglomerated in the medium to average particle sizes of 140–200nm. Dissolved Cu from CuNPs increased over 2h to 1–2% of total Cu. The photosynthetic yield of C. reinhardtii strongly decreased after exposure for 1 or 2h to dissolved CuII in the concentration range 0.1–10μM, whereas this decrease occurred in the total Cu concentration range 1–100μM after exposure to CuNPs. Effects of CuNPs were compared with those of dissolved CuII on the basis of dissolution experiments. CuNP effects on photosynthetic yield were similar or somewhat stronger for the same dissolved Cu2+ concentration. Addition of EDTA as a strong ligand for CuII suppressed the toxicity of dissolved CuII and of CuNPs. These results thus indicate effects on the algae are mostly from free Cu2+.

BIOspektrum ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 202-204
Author(s):  
Myra N. Chávez ◽  
Benedikt Fuchs ◽  
Jörg Nickelsen

AbstractWe have recently proposed a novel strategy named photosynthetic tissue engineering to overcome clinical problems due to hypoxia. The idea is based on transgenic photoautotrophic microorganisms that produce oxygen and at the same time secrete functional recombinant proteins into tissues. In particular, the unicellular green alga Chlamydomonas reinhardtii has successfully been used to boost the regenerative potential of several biomedical devices, such as dermal scaffolds and surgical sutures.


2021 ◽  
Author(s):  
Théo Le Moigne ◽  
Edoardo Sarti ◽  
Antonin Nourisson ◽  
Alessandra Carbone ◽  
Stéphane D. Lemaire ◽  
...  

The Calvin-Benson cycle fixes carbon dioxide into organic triosephosphates through the collective action of eleven conserved enzymes. Regeneration of ribulose-1,5-bisphosphate, the substrate of Rubisco-mediated carboxylation, requires two lyase reactions catalyzed by fructose-1,6-bisphosphate aldolase (FBA). While cytoplasmic FBA has been extensively studied in non-photosynthetic organisms, functional and structural details are limited for chloroplast FBA encoded by oxygenic phototrophs . Here we determined the crystal structure of plastidial FBA from the unicellular green alga Chlamydomonas reinhardtii (Cr). We confirm that CrFBA folds as a TIM barrel, describe its catalytic pocket and homo-tetrameric state. Multiple sequence profiling classified the photosynthetic paralogs of FBA in a distinct group from non-photosynthetic paralogs. We mapped the sites of thiol- and phospho-based post-translational modifications known from photosynthetic organisms and predict their effects on enzyme catalysis.


Sign in / Sign up

Export Citation Format

Share Document