A mutation in the purine biosynthetic enzyme ATASE2 impacts high light signalling and acclimation responses in green and chlorotic sectors of Arabidopsis leaves

2011 ◽  
Vol 38 (5) ◽  
pp. 401 ◽  
Author(s):  
Nick S. Woo ◽  
Matthew J. Gordon ◽  
Stephen R. Graham ◽  
Jan Bart Rossel ◽  
Murray R. Badger ◽  
...  

In this report, we investigate the altered APX2 expression 13 (alx13) mutation of Arabidopsis thaliana, a mutation in glutamine phosphoribosyl pyrophosphate amidotransferase 2 (ATASE2), the primary isoform of the enzyme mediating the first committed step of purine biosynthesis. Light-dependent leaf variegation was exhibited by alx13 plants, with partial shading of alx13 rosettes revealing that the development of chlorosis in emerging leaves is influenced by the growth irradiance of established leaves. Chlorotic sectors arose from emerging green alx13 leaves during a phase of rapid cell division and expansion, which shows that each new cell’s fate is independent of its progenitor. In conjunction with the variegated phenotype, alx13 plants showed altered high light stress responses, including changed expression of genes encoding proteins with antioxidative functions, impaired anthocyanin production and over-accumulation of reactive oxygen species. These characteristics were observed in both photosynthetically-normal green tissues and chlorotic tissues. Chlorotic tissues of alx13 leaves accumulated mRNAs of nuclear-encoded photosynthesis genes that are repressed in other variegated mutants of Arabidopsis. Thus, defective purine biosynthesis impairs chloroplast biogenesis in a light-dependent manner and alters the induction of high light stress pathways and nuclear-encoded photosynthesis genes.

2013 ◽  
Vol 162 ◽  
pp. 1-10 ◽  
Author(s):  
Yuefei Xu ◽  
Juanjuan Fu ◽  
Xitong Chu ◽  
Yongfang Sun ◽  
He Zhou ◽  
...  

2008 ◽  
Vol 53 (No. 8) ◽  
pp. 340-344 ◽  
Author(s):  
J. Štepigová ◽  
H. Vráblíková ◽  
J. Lang ◽  
K. Večeřová ◽  
M. Barták

In the presented study, we describe techniques for glutathione and pigment determination in lichens used in our laboratory. Glutathione and xanthophyll cycle pigments, especially zeaxanthin, are important antioxidants protecting plants against various stresses. In our laboratory, the high light stress in lichens has been intensively studied for several years. We extract glutathione in HCl and determine it by thiol-binding fluorescence label monobromobimane. For pigment determination, homogenized lichen thalli are extracted with pure acetone. According to our results, the total amount of glutathione decreases after a short-term high light exposure, while the amount of zeaxanthin increases.


Sign in / Sign up

Export Citation Format

Share Document