Cytosolic alkalisation and nitric oxide production in UVB-induced stomatal closure in Arabidopsis thaliana

2014 ◽  
Vol 41 (8) ◽  
pp. 803 ◽  
Author(s):  
Xiao-Min Ge ◽  
Yan Zhu ◽  
Jun-Min He

The role and the interrelationship of cytosolic alkalisation and nitric oxide (NO) in UVB-induced stomatal closure were investigated in Arabidopsis thaliana (L.) Heynh. by stomatal bioassay and laser-scanning confocal microscopy. In response to 0.5 W m–2 UVB radiation, the rise of NO levels in guard cells occurred after cytosolic alkalisation but preceded stomatal closure. UVB-induced NO production and stomatal closure were both inhibited by NO scavengers, nitrate reductase (NR) inhibitors and a Nia2–5/Nia1–2 mutation, and also by butyrate. Methylamine induced NO generation and stomatal closure in the wild-type but not in the Nia2–5/Nia1–2 mutant or wild-type plants pretreated with NO scavengers or NR inhibitors while enhancing the cytosolic pH in guard cells under light. NO generation in wild-type guard cells was largely induced after 60 min of UVB radiation. The defect in UVB-induced NO generation in Nia2–5/Nia1–2 guard cells did not affect the changes of guard cell pH before 60 min of UVB radiation, but prevented the UVB-induced cytosolic alkalisation after 60 min of radiation. Meanwhile, exogenous NO caused a marked rise of cytosolic pH in guard cells. Together, our results show that cytosolic alkalisation and NR-dependent NO production coordinately function in UVB signalling in A. thaliana guard cells.

2013 ◽  
Vol 93 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Yinli Ma ◽  
Xiaoping She ◽  
Shushen Yang

Ma, Y., She, X. and Yang, S. 2013. Cytosolic alkalization-mediated H 2 O 2 and NO production are involved in darkness-induced stomatal closure in Vicia faba. Can. J. Plant Sci. 93: 119–130. Darkness raised cytosolic pH, hydrogen peroxide (H2O2) and nitric oxide (NO) levels in guard cells while inducing Vicia faba stomatal closure. These darkness effects were prevented by weak acid butyric acid, H2O2 modulators ascorbic acid (ASA), catalase (CAT), diphenyleneiodonium (DPI) and NO modulators 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), NG-nitro-L-arg-methyl ester (L-NAME) respectively. The data suggest that cytosolic alkalization, H2O2 and NO all participate in darkness-induced stomatal closure. During darkness treatment, pH rise became noticeable at 10 min and peaked at 25 min, while H2O2 and NO production increased significantly at 20 min and reached their maximums at 40 min. The H2O2 and NO levels were increased by methylamine in light and decreased by butyric acid in darkness. The results show that cytosolic alkalization induces H2O2 and NO production. ASA, CAT and DPI suppressed NO production by methylamine, c-PTIO and L-NAME prevented H2O2 generation by methylamine. Calcium chelator 1,2-bis (2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM) and 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) restricted darkness-induced alkalization, H2O2 and NO production and stomatal closure. We suggest that cytosolic alkalization is necessary for H2O2 and NO production during darkness-induced stomatal closure. H2O2 mediates NO synthesis by alkalization, and vice versa. Calcium may act upstream of cytosolic alkalization, H2O2 and NO production, besides its known action downstream of H2O2 and NO.


2005 ◽  
Vol 32 (3) ◽  
pp. 237 ◽  
Author(s):  
Jun-Min He ◽  
Hua Xu ◽  
Xiao-Ping She ◽  
Xi-Gui Song ◽  
Wen-Ming Zhao

Previous studies have showed that UV-B can stimulate closure as well as opening of stomata. However, the mechanism of this complex effect of UV-B is not clear. The purpose of this paper is to investigate the role and the interrelationship of H2O2 and NO in UV-B-induced stomatal closure in broad bean (Vicia faba L.). By epidermal strip bioassay and laser-scanning confocal microscopy, we observed that UV-B-induced stomatal closure could be largely prevented not only by NO scavenger c-PTIO or NO synthase (NOS) inhibitor l-NAME, but also by ascorbic acid (ASC, an important reducing substrate for H2O2 removal) or catalase (CAT, the H2O2 scavenger), and that UV-B-induced NO and H2O2 production in guard cells preceded UV-B-induced stomatal closure. These results indicate that UV-B radiation induces stomatal closure by promoting NO and H2O2 production. In addition, c-PTIO, l-NAME, ASC and CAT treatments could effectively inhibit not only UV-B-induced NO production, but also UV-B-induced H2O2 production. Exogenous H2O2-induced NO production and stomatal closure were partly abolished by c-PTIO and l-NAME. Similarly, exogenous NO donor sodium nitroprusside-induced H2O2 production and stomatal closure were also partly reversed by ASC and CAT. These results show a causal and interdependent relationship between NO and H2O2 during UV-B-regulated stomatal movement. Furthermore, the l-NAME data also indicate that the NO in guard cells of Vicia faba is probably produced by a NOS-like enzyme.


2010 ◽  
Vol 58 (2) ◽  
pp. 81 ◽  
Author(s):  
Xiao-Ping She ◽  
Jin Li ◽  
Ai-Xia Huang ◽  
Xi-Zhu Han

By using pharmacological approaches and laser scanning confocal microscopy based on 4,5-diaminofluorescein diacetate (DAF-2DA), the relationship between the inhibition of dark-induced stomatal closure caused by fusicoccin (FC) and the changes of nitric oxide (NO) levels in guard cells in broad bean was studied. The results show that, like 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), a NO scavenger and NG-nitro-L-Arg-methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), FC inhibited stomatal closure induced by darkness, and reduced the levels of NO in guard cells in darkness, indicating that FC inhibits dark-induced stomatal closure through lessening NO levels in guard cells. In addition, similar to c-PTIO, both FC and butyric acid not only suppressed sodium nitroprusside (SNP)-induced stomatal closure and DAF-2DA fluorescence in guard cells, but also reopened the closed stomata induced by dark and removed NO that had been generated by dark. The results show that both FC and butyric acid cause NO removal in guard cells, and also suggest that FC-caused NO removal is probably associated with cytosolic acidification in guard cells. Taken together, our results show that FC perhaps causes cytosolic acidification in guard cells, consequently induces NO removal and reduces NO levels in guard cells, and finally inhibits stomatal closure induced by dark.


2015 ◽  
Vol 42 (11) ◽  
pp. 1019 ◽  
Author(s):  
Yanfeng Sun ◽  
Dong Lv ◽  
Wei Wang ◽  
Wei Xu ◽  
Li Wang ◽  
...  

Nitric oxide (NO) and lipoxygenase (LOX)-derived oxylipins play important roles in stomatal closure in plants, and LOX–NO crosstalk has been indicated in mesophyll cells. However, whether the crosstalk also exists in guard cells is not clear and the detailed mechanisms remain unknown. Here, we report that exogenous sodium nitroprusside (SNP, a NO donor)-induced stomatal closure was clearly impaired in the AtLOX2 null mutant lox2–1 compared with wild-type (WT) Arabidopsis thaliana (L.) Heynh. Patch clamp analysis showed that the SNP-suppressed activity of inward-rectifying potassium channels in lox2–1 guard cell protoplasts was reduced. Moreover, SNP promoted an increase in cytosolic Ca2+ concentration in guard cells of lox2–1 mutants was inhibited compared with the WT. These results suggest that AtLOX2 plays an important role in NO-induced stomatal closure by affecting the cytosolic Ca2+ concentration increase and the activity of inward-rectifying potassium channels in guard cells. Furthermore, lox2–1 mutants showed a higher rate of leaf water loss and a relatively wider stomatal aperture than the WT under normal growth conditions. These data imply that AtLOX2 might modulate stomatal movement by increasing oxylipin generation in A. thaliana.


2008 ◽  
Vol 56 (4) ◽  
pp. 347 ◽  
Author(s):  
Xiaoping She ◽  
Xigui Song

By using pharmacological approaches and laser scanning confocal microscopy (LSCM) based on 4, 5-diaminofluorescein diacetate (DAF-2 DA), the roles of MAPKK/CDPK and their effects on nitric oxide (NO) levels of guard cells during darkness-induced stomatal closure in broad bean were investigated. The results indicated that both 2′-amino-3′-methoxyflavone (PD98059) (an inhibitor of mitogen-activated protein kinase kinase, MAPKK) and trifluoperazine (TFP) (a specific inhibitor of calcium-dependent protein kinase, CDPK) reduced the levels of NO in guard cells and significantly reversed darkness-induced stomatal closure, implying that MAPKK/CDPK mediate darkness-induced stomatal closure by enhancing NO levels in guard cells. In addition, as with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), but not with nitric oxide synthase inhibitor NG-nitro-L-Arg-methyl ester (L-NAME), PD98059 and TFP not only reduced 4,5-diaminofluorescein diacetate (DAF-2 DA) fluorescence in guard cells by sodium nitroprusside (SNP) in light, but also abolished NO that had been generated during a dark period, and reversed stomatal closure by SNP and by darkness, suggesting MAPKK and CDPK are probably related to restraining the NO scavenging to elevate NO levels in guard cells, during darkness-induced stomatal closure. The results also showed that both PD98059 and TFP reduced stomatal closure by SNP, implying that the possibility of MAPKK and CDPK acting as the target downstream of NO should not be ruled out. There may be a causal and interdependent relationship between MAPKK/CDPK and NO in darkness-induced stomatal closure, and in the process this cross-talk may lead to the formation of a self-amplification loop about them.


2021 ◽  
Vol 48 (2) ◽  
pp. 195 ◽  
Author(s):  
Yinli Ma ◽  
Luhan Shao ◽  
Wei Zhang ◽  
Fengxi Zheng

The role of hydrogen sulfide (H2S) and its relationship with hydrogen peroxide (H2O2) in brassinosteroid-induced stomatal closure in Arabidopsis thaliana (L.) Heynh. were investigated. In the present study, 2,4-epibrassinolide (EBR, a bioactive BR) induced stomatal closure in the wild type, the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor. However, EBR failed to close the stomata of mutants Atl-cdes, Atd-cdes, AtrbohF and AtrbohD/F. Additionally, EBR induced increase of L-/D-cysteine desulfhydrase (L-/D-CDes) activity, H2S production, and H2O2 production in the wild type, and the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor respectively. Furthermore, EBR increased H2O2 levels in the guard cells of AtrbohD mutant, but couldn’t raise H2O2 levels in the guard cells of AtrbohF and AtrbohD/F mutants. Next, scavengers and synthesis inhibitor of H2O2 could significantly inhibit EBR-induced rise of L-/D-CDes activity and H2S production in the wild type, but H2S scavenger and synthesis inhibitors failed to repress EBR-induced H2O2 production. EBR could increase H2O2 levels in the guard cells of Atl-cdes and Atd-cdes mutants, but EBR failed to induce increase of L-/D-CDes activity and H2S production in AtrbohF and AtrbohD/F mutants. Therefore, we conclude that H2S and H2O2 are involved in the signal transduction pathway of EBR-induced stomatal closure. Altogether, our data suggested that EBR induces AtrbohF-dependent H2O2 production and subsequent AtL-CDes-/AtD-CDes-catalysed H2S production, and finally closes stomata in A. thaliana.


2019 ◽  
Author(s):  
Yinli Ma ◽  
Luhan Shao ◽  
Jiao Niu

Abstract Background Whether hydrogen sulfide (H2S) mediates darkness-induced stomatal closure in A. thaliana is unknown, and the interaction between H2S and hydrogen peroxide (H2O2) in the process needs to be elucidated. Results Our results indicated that H2S modulators hypotaurine (HT), aminooxy acetic acid (AOA), hydroxylamine (NH2OH) and potassium pyruvate (N3H3KO3)+ammonia (NH3) all inhibited darkness-induced stomatal closure, H2S generation and L-/D-cysteine desulfhydras (L-/D-CDes) activity increase in wild-type A. thaliana leaves. Darkness induced stomatal closure in wild-type plants, but failed in Atl-cdes and Atd-cdes mutants. Additionally, H2S content and L-/D-CDes activity were significantly decreased after application with H2O2 modulators ascorbic acid (ASA), catalase (CAT), diphenylene iodonium (DPI), and salicylhydroxamic acid (SHAM) in darkness, but there is almost no effects on H2O2 levels when in presence of HT, AOA, NH2OH, and C3H3KO3+NH3 in darkness in wild-type plants. Moreover, darkness couldn't increase H2S content and L-/D-CDes activity of AtrbohF and AtrbohD/F mutants leaves, but the levels of H2O2 increased in guard cells of Atl-cdes and Atd-cdes mutants. Conclusions The results suggest that L-/D-CDes-generated H2S mediates darkness-induced stomatal closure, and functions downstream of H2O2 in A. thaliana.


2019 ◽  
Author(s):  
Yinli Ma ◽  
Luhan Shao ◽  
Jiao Niu

Abstract Background Whether stomatal movement by darkness in Arabidopsis thaliana is mediated by hydrogen sulfide (H2S) is undiscovered yet, so the interaction between hydrogen peroxide (H2O2) and H2S in the process needs to be elucidated. Results Our results indicated that H2S modulators aminooxy acetic acid (AOA), potassium pyruvate (N3H3KO3) + ammonia (NH3), hydroxylamine (NH2OH), and hypotaurine (HT) inhibited darkness-induced stomatal closure, H2S generation and L-/D-cysteine desulfhydrase (L-/D-CDes) activity increased in wild-type A. thaliana leaves. Darkness induced stomatal closure in wild-type plants, but failed in Atl-cdes and Atd-cdes mutants. Additionally, both L-/D-CDes activity and H2S content were significantly decreased after applying H2O2 modulators salicylhydroxamic acid (SHAM), ascorbic acid (ASA), diphenylene iodonium (DPI), and catalase (CAT) in darkness, but there was almost no effects on H2O2 levels in the presence of AOA, C3H3KO3+NH3, NH2OH, and HT of wild-type plants in darkness. Moreover, darkness couldn't increase H2S content and L-/D-CDes activity of AtrbohF and AtrbohD/F mutants leaves, but increased H2O2 levels in Atl-cdes and Atd-cdes guard cells. Conclusions We observed that L-/D-CDes-generated H2S mediates stomatal closure by darkness, and functions downstream of H2O2 in A. thaliana.


Sign in / Sign up

Export Citation Format

Share Document