Leaf metabolites profiling between red and green phenotypes of Suaeda salsa by widely targeted metabolomics

2019 ◽  
Vol 46 (9) ◽  
pp. 845 ◽  
Author(s):  
Xin Wang ◽  
Junhong Bai ◽  
Wei Wang ◽  
Guangliang Zhang

The Chenopodiaceae Suaeda salsa (L.) Pall. is a traditional Chinese medicine and food with green and red phenotypes in the Yellow River Delta. We identified 521 metabolites using widely targeted metabolomics, of which 165 were selected as significantly differential metabolites which could be related to the leaf traits of different phenotypes of S. salsa. Two anthocyanins (i.e. cyanidin O-acetylhexoside and delphinidin-3-O-(6ʹ-O-α-rhamnopyranosy l-β-glucopyranoside)) were responsible for red colour in red leaves of S. salsa. Gallic acid, which existed only in red one, was the main reason for leaf succulence. D-arabitol and ribitol were two significantly upregulated carbohydrates in red phenotype. Four alkaloids (i.e. harmaline, aminophylline, pipecolate and trigonelline) were upregulated in red leaves. Hormonal changed involved a decrease in indoleacetic acid-valine (IAA-Val), N6-isopentenyladenosine-5ʹ-monophosphate (iPRMP), isopentenyladenineriboside (iPR), trans-abscisic acid (S-ABA), salicylic acid O-hexoside, methyl jasmonate, N6-isopentenyladenine (iP), trans-zeatin riboside-O-glucoside iso2, trans-zeatin riboside-O-glucoside, and a tendency for dihydrozeatin 9-O-glucoside (DZ9G) down accumulation. In addition, the regulation of amino acids and lipids also contributed to the adaptation of red phenotype to harsh environment. Generally, our findings provide a comprehensive comparison of the metabolites between two phenotypes of S. salsa and an interpretation of phenotypic differences from the point of metabolomics.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yaxing Zhou ◽  
Zhenguo Wang ◽  
Yan Li ◽  
Zhigang Li ◽  
Hui Liu ◽  
...  

Sweet sorghum (Sorghum bicolor) is one of the most important cereal crops in the world with colorful seeds. To study the diversity and cultivar-specificity of phytochemicals in sweet sorghum seeds, widely targeted metabolomics was used to analyze the metabolic profiles of the white, red, and purple seeds from three sweet sorghum cultivars Z6, Z27, and HC4. We identified 651 metabolites that were divided into 24 categories, including fatty acids, glycerolipids, flavonoids, benzoic acid derivatives, anthocyanins, and nucleotides and its derivatives. Among them, 217 metabolites were selected as significantly differential metabolites which could be related to the seed color by clustering analysis, principal component analysis (PCA), and orthogonal signal correction and partial least squares-discriminant analysis (OPLS-DA). A significant difference was shown between the red seed and purple seed samples, Z27 and HC4, in which 106 were downregulated and 111 were upregulated. The result indicated that 240 metabolites were significantly different, which could be related to the purple color with 58 metabolites downregulated and 182 metabolites upregulated. And 199 metabolites might be involved in the red phenotype with 54 downregulated and 135 upregulated. There were 45 metabolites that were common to all three cultivars, while cyanidin O-malonyl-malonyl hexoside, cyanidin O-acetylhexoside, and cyanidin 3-O-glucosyl-malonylglucoside were significantly upregulated red seeds, which could be the basis for the variety of seed colors. Generally, our findings provide a comprehensive comparison of the metabolites between the three phenotypes of S. bicolor and an interpretation of phenotypic differences from the point of metabolomics.


ISRN Agronomy ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Liu Xianzhao ◽  
Wang Chunzhi ◽  
Su Qing

Screening of available local halophytes for salinity tolerance is of considerable economic value for the utilization of heavy salt-affected lands in coastal tidal-flat areas and other saline areas. In this study, the germination and seedling pot experiments on salt tolerance of eight halophytic species from Yellow River Delta, China, at seven NaCl concentrations (0, 50, 100, 150, 200, 250, and 300 mM), were conducted at both growth stages. Results showed that germination rate and germination index decreased with an increase in NaCl concentration. The higher germination rates were obtained from Tamarix chinensis and Suaeda salsa seeds exposed to 0~200 mM NaCl. At the seedling stage, the salt tolerances of eight halophytes were also different from each other. Tamarix chinensis had significantly greater fresh biomass and plant height in relative terms than the others in all salt treatments. The order of the relative growth yield in seedling was Tamarix chinensis > Suaeda salsa > Salicornia europaea > Limonium bicolor > Atriplex isatidea > Apocynum venetum > Phragmites australis > Sesbania cannabina. The comprehensive analysis showed that Tamarix chinensis had the highest tolerance to salt, followed by Suaeda salsa, and the salt tolerance of Sesbania cannabina was the lowest.


2011 ◽  
Vol 39 (8) ◽  
pp. 720-727 ◽  
Author(s):  
Xiaoli Liu ◽  
Linbao Zhang ◽  
Liping You ◽  
Huifeng Wu ◽  
Jianmin Zhao ◽  
...  

2018 ◽  
Vol 28 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Jia Jia ◽  
Junhong Bai ◽  
Wei Wang ◽  
Guangliang Zhang ◽  
Xin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document