scholarly journals Relationships among felt scale insects (Hemiptera:Coccoidea:Eriococcidae) of southern beech, Nothofagus (Nothofagaceae), with the first descriptions of Australian species of the Nothofagus-feeding genus Madarococcus Hoy

2008 ◽  
Vol 22 (3) ◽  
pp. 365 ◽  
Author(s):  
Nate B. Hardy ◽  
Penny J. Gullan ◽  
Rosa C. Henderson ◽  
Lyn G. Cook

Species of southern beech (Nothofagus) have been studied extensively because of their importance in understanding southern hemisphere biogeography. Nothofagus species support a diverse assemblage of insect herbivores, including more than 30 described species of felt scales (Eriococcidae). We reconstructed the phylogeny of the Nothofagus-feeding felt scales with nucleotide sequence data and morphology. All but one of the exclusively Nothofagus-feeding species included in the analyses were recovered as a monophyletic group. This clade comprised the genera Chilechiton Hodgson & Miller, Chilecoccus Miller & González, Intecticoccus Kondo, Madarococcus Hoy (except for M. totorae Hoy), Sisyrococcus Hoy and several species of the genus Eriococcus Targioni Tozzetti. The genera Eriococcus and Madarococcus were not recovered as monophyletic. Here we revise Madarococcus. We expand the concept of the genus, provide a key to the adult females of the 31 species of Madarococcus and, for each named species, provide revised synonymies and any new collection or taxonomic information. We recognise the genus from Australia for the first time and describe the adult females of six new Australian species: Madarococcus cunninghamii Hardy & Gullan, sp. nov.; M. meander Hardy & Gullan, sp. nov.; M. megaventris Hardy & Gullan, sp. nov.; M. moorei Hardy & Gullan, sp. nov.; M. occultus Hardy & Gullan, sp. nov., and M. osculus Hardy & Gullan, sp. nov. We also describe the first-instar nymphs of M. cunninghamii, sp. nov., M. meander, sp. nov. and M. moorei, sp. nov. We transfer 17 species into Madarococcus from Eriococcus: M. argentifagi (Hoy), comb. nov.; M. cavellii (Maskell), comb. nov.; M. chilensis (Miller & González), comb. nov.; M. detectus (Hoy), comb. nov.; M. eurythrix (Miller & González), comb. nov.; M. fagicorticis (Maskell), comb. nov.; M. hispidus (Hoy), comb. nov.; M. latilobatus (Hoy), comb. nov.; M. maskelli, (Hoy), comb. nov.; M. montifagi (Hoy), comb. nov.; M. navarinoensis (Miller & González), comb. nov.; M. nelsonensis (Hoy), comb. nov.; M. nothofagi (Hoy), comb. nov.; M. podocarpi (Hoy), comb. nov.; M. raithbyi (Maskell), comb. nov.; M. rotundus (Hoy), comb. nov. and M. rubrifagi (Hoy), comb. nov. We transfer two species from Sisyrococcus into Madarococcus: M. intermedius (Maskell), comb. nov. and M. papillosus (Hoy), comb. nov. One species, M. totarae (Maskell), is excluded from Madarococcus, but cannot at present be placed in another genus and is listed as ‘M.’ totarae incertae sedis. We report the first collection of an eriococcid, M. osculus, sp. nov., on the deciduous beech, Nothofagus gunnii. With respect to biogeography, the results of our phylogenetic analysis are congruent with those obtained from recent analysis of Nothofagus; Australian and New Zealand species of Madarococcus form a monophyletic group to the exclusion of the South American species, suggesting that long-distance dispersal has played an important role in shaping the distributions of both the Nothofagus-feeding felt scales and their hosts.

Zootaxa ◽  
2021 ◽  
Vol 4979 (1) ◽  
pp. 226-227
Author(s):  
CHRIS HODGSON ◽  
BARB DENNO ◽  
GILLIAN W. WATSON

The scale insects (infraorder Coccomorpha) are the most morphologically specialised members of the Hemiptera. They form a monophyletic group within the suborder Sternorrhyncha, having one-segmented tarsi and a single claw (all other hemipterans have a double claw). They show extreme sexual dimorphism: the more-or-less sessile adult females are wingless and larviform, whereas the motile adult males mostly are winged and lack mouthparts. Within the Coccomorpha, 54 families are currently recognised, of which 20 are known only from fossils and 34 are extant (García Morales et al. 2016). 


2013 ◽  
Vol 5 ◽  
pp. BECB.S10886 ◽  
Author(s):  
Brijesh Singh Yadav ◽  
Venkateswarlu Ronda ◽  
Dinesh P. Vashista ◽  
Bhaskar Sharma

The recent advances in sequencing technologies and computational approaches are propelling scientists ever closer towards complete understanding of human-microbial interactions. The powerful sequencing platforms are rapidly producing huge amounts of nucleotide sequence data which are compiled into huge databases. This sequence data can be retrieved, assembled, and analyzed for identification of microbial pathogens and diagnosis of diseases. In this article, we present a commentary on how the metagenomics incorporated with microarray and new sequencing techniques are helping microbial detection and characterization.


Cladistics ◽  
1992 ◽  
Vol 8 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Victor A. Albert ◽  
Brent D. Mishler

Zootaxa ◽  
2021 ◽  
Vol 5052 (2) ◽  
pp. 1-40
Author(s):  
GILLIAN W. WATSON ◽  
DAVID OUVRARD

Scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) are obligate plant parasites feeding on plant sap; some are damaging pests in agriculture, horticulture and forestry. Despite their economic importance, the scale insects found in continental Africa have not been extensively studied and the keys for identifying them are incomplete and scattered through the literature in several languages. The aim of this study is to improve our understanding of the African scale insect fauna. As a first step towards their identification, we provide a key to the 23 families currently known from continental Africa, based on slide-mounted adult females, covering Aclerdidae, Asterolecaniidae, Cerococcidae, Coccidae, Conchaspididae, Dactylopiidae, Diaspididae, Eriococcidae, Halimococcidae, Kermesidae, Kerriidae, Kuwaniidae, Lecanodiaspididae, Margarodidae, Matsucoccidae, Micrococcidae, Monophlebidae, Ortheziidae, Phoenicococcidae, Pseudococcidae, Putoidae, Rhizoecidae and Stictococcidae.  


1982 ◽  
Vol 39 (1) ◽  
pp. 1-30 ◽  
Author(s):  
George L. Gabor Miklos ◽  
Amanda Clare Gill

SummaryThe nucleotide sequence data from highly repeated DNAs of inverte-brates and mammals are summarized and briefly discussed. Very similar conclusions can be drawn from the two data bases. Sequence complexities can vary from 2 bp to at least 359 bp in invertebrates and from 3 bp to at least 2350 bp in mammals. The larger sequences may or may not exhibit a substructure. Significant sequence variation occurs for any given repeated array within a species, but the sources of this heterogeneity have not been systematically partitioned. The types of alterations in a basic repeating unit can involve base changes as well as deletions or additions which can vary from 1 bp to at least 98 bp in length. These changes indicate that sequence per se is unlikely to be under significant biological constraints and may sensibly be examined by analogy to Kimura's neutral theory for allelic variation. It is not possible with the present evidence to discriminate between the roles of neutral and selective mechanisms in the evolution of highly repeated DNA.Tandemly repeated arrays are constantly subjected to cycles of amplification and deletion by mechanisms for which the available data stem largely from ribosomal genes. It is a matter of conjecture whether the solutions to the mechanistic puzzles involved in amplification or rapid redeployment of satellite sequences throughout a genome will necessarily give any insight into biological functions.The lack of significant somatic effects when the satellite DNA content of a genome is significantly perturbed indicates that the hunt for specific functions at the cellular level is unlikely to prove profitable.The presence or in some cases the amount of satellite DNA on a chromosome, however, can have significant effects in the germ line. There the data show that localized condensed chromatin, rich in satellite DNA, can have the effect of rendering adjacent euchromatic regions rec−, or of altering levels of recombination on different chromosomes. No data stemming from natural populations however are yet available to tell us if these effects are of adaptive or evolutionary significance.


2006 ◽  
Vol 126 (4) ◽  
pp. 415-423 ◽  
Author(s):  
J.J. Li ◽  
G.L. Pei ◽  
H.X. Pang ◽  
A. Bilderbeck ◽  
S.S. Chen ◽  
...  

2004 ◽  
Vol 52 (6) ◽  
pp. 739
Author(s):  
Imogen Poole ◽  
Richard W. Barnes

Qualitative and quantitative wood anatomical data are given for two narrow Queensland endemic Eucryphia species, E. wilkiei B.Hyland and Eucryphia jinksii P.I.Forst. Comparisons of wood anatomy of all extant Eucryphia taxa show that E. jinksii and E. wilkiei are distinct from each other, and other Eucryphia species. However, for both species characters relating to perforation plates, helical thickening (E. wilkiei only) and fibres are shared with the South American species, whereas the presence of crystals in the axial parenchyma is shared only with the Australian species. These data suggest that, based on wood anatomy, E. jinksii and E. wilkiei are basal among Australian species.


Sign in / Sign up

Export Citation Format

Share Document