Measuring niche overlap between co-occurring Plectropomus spp. using acoustic telemetry and stable isotopes

2017 ◽  
Vol 68 (8) ◽  
pp. 1468 ◽  
Author(s):  
J. K. Matley ◽  
M. R. Heupel ◽  
A. T. Fisk ◽  
C. A. Simpfendorfer ◽  
A. J. Tobin

Investigating niche overlap in exploited fish species can reveal behavioural information necessary to improve conservation and fisheries management at a species level. The present study examined spatial and dietary overlap between two co-occurring reef fish, namely Plectropomus leopardus and P. maculatus, at an inshore reef in the Great Barrier Reef Marine Park using acoustic telemetry and stable isotopes. Movements of tagged fish within an acoustic array of 19 receivers deployed along a narrow reef portion of Orpheus Island were monitored for up to 3 years. Although space use was similar between species, spatial overlap was rare and P. maculatus (n=30) was consistently deeper than P. leopardus (n=32). Dietary overlap between species was high based on overlapping δ15N and δ13C isotopic niches in muscle tissue (n=20). The complementary stable isotope and acoustic telemetry data revealed these species had similar isotopic niches but distinct space use patterns, which may be a product of competition for resources. These findings show species-specific behaviours within a genus commonly managed or reported as a single entity, and provide new information on partitioning of resources by Plectropomus spp. in inshore reef environments.

Polar Biology ◽  
2019 ◽  
Vol 42 (8) ◽  
pp. 1581-1593
Author(s):  
Nicole P. Boucher ◽  
Andrew E. Derocher ◽  
Evan S. Richardson

2016 ◽  
Vol 283 (1834) ◽  
pp. 20160717 ◽  
Author(s):  
James S. E. Lea ◽  
Nicolas E. Humphries ◽  
Rainer G. von Brandis ◽  
Christopher R. Clarke ◽  
David W. Sims

Marine protected areas (MPAs) are commonly employed to protect ecosystems from threats like overfishing. Ideally, MPA design should incorporate movement data from multiple target species to ensure sufficient habitat is protected. We used long-term acoustic telemetry and network analysis to determine the fine-scale space use of five shark and one turtle species at a remote atoll in the Seychelles, Indian Ocean, and evaluate the efficacy of a proposed MPA. Results revealed strong, species-specific habitat use in both sharks and turtles, with corresponding variation in MPA use. Defining the MPA's boundary from the edge of the reef flat at low tide instead of the beach at high tide (the current best in Seychelles) significantly increased the MPA's coverage of predator movements by an average of 34%. Informed by these results, the larger MPA was adopted by the Seychelles government, demonstrating how telemetry data can improve shark spatial conservation by affecting policy directly.


Gaia Scientia ◽  
2016 ◽  
Vol 10 (4) ◽  
pp. 86-95 ◽  
Author(s):  
Adna Ferreira da Silva Garcia ◽  
Ana Lúcia Vendel

The current work investigates dietary overlap and food partitioning among nine abundant carnivorous fishes caught in the shallow waters of the Paraíba do Norte river estuary, Paraíba State, Brazil. Fishes were sampled with a beach seine net between January and December 2008 and a total of 958 specimens had their stomach content analyzed. Crustacea was the dominant food resource for Lutjanus alexandrei, L. jocu and Bathygobius soporator, whereas Telostei were consumed mainly by Centropomus undecimalis and C. parallelus. In contrast, Polychaeta were preyed upon mainly by Diapterus rhombeus, Eucinostomus argenteus, Sciades herzbergii and S. parkeri. Although most species consumed similar food items, they did that in varying proportions and amounts. Overall, the niche overlap among species was low (< 0.60), but there were several cases where pair of species had their feeding niche highly overlapped (between 0.72 and 0.97). These findings corroborate the hypothesis that food resource partitioning determines species coexistence in estuarine tropical environments.


Polar Biology ◽  
2020 ◽  
Author(s):  
Renske P. J. Hoondert ◽  
Nico W. van den Brink ◽  
Martine J. van den Heuvel-Greve ◽  
Ad M. J. Ragas ◽  
A. Jan Hendriks

AbstractStable isotopes are often used to provide an indication of the trophic level (TL) of species. TLs may be derived by using food-web-specific enrichment factors in combination with a representative baseline species. It is challenging to sample stable isotopes for all species, regions and seasons in Arctic ecosystems, e.g. because of practical constraints. Species-specific TLs derived from a single region may be used as a proxy for TLs for the Arctic as a whole. However, its suitability is hampered by incomplete knowledge on the variation in TLs. We quantified variation in TLs of Arctic species by collating data on stable isotopes across the Arctic, including corresponding fractionation factors and baseline species. These were used to generate TL distributions for species in both pelagic and benthic food webs for four Arctic areas, which were then used to determine intra-sample, intra-study, intra-region and inter-region variation in TLs. Considerable variation in TLs of species between areas was observed. This is likely due to differences in parameter choice in estimating TLs (e.g. choice of baseline species) and seasonal, temporal and spatial influences. TLs between regions were higher than the variance observed within regions, studies or samples. This implies that TLs derived within one region may not be suitable as a proxy for the Arctic as a whole. The TL distributions derived in this study may be useful in bioaccumulation and climate change studies, as these provide insight in the variability of trophic levels of Arctic species.


2010 ◽  
Vol 365 (1550) ◽  
pp. 2221-2231 ◽  
Author(s):  
John G. Kie ◽  
Jason Matthiopoulos ◽  
John Fieberg ◽  
Roger A. Powell ◽  
Francesca Cagnacci ◽  
...  

Recent advances in animal tracking and telemetry technology have allowed the collection of location data at an ever-increasing rate and accuracy, and these advances have been accompanied by the development of new methods of data analysis for portraying space use, home ranges and utilization distributions. New statistical approaches include data-intensive techniques such as kriging and nonlinear generalized regression models for habitat use. In addition, mechanistic home-range models, derived from models of animal movement behaviour, promise to offer new insights into how home ranges emerge as the result of specific patterns of movements by individuals in response to their environment. Traditional methods such as kernel density estimators are likely to remain popular because of their ease of use. Large datasets make it possible to apply these methods over relatively short periods of time such as weeks or months, and these estimates may be analysed using mixed effects models, offering another approach to studying temporal variation in space-use patterns. Although new technologies open new avenues in ecological research, our knowledge of why animals use space in the ways we observe will only advance by researchers using these new technologies and asking new and innovative questions about the empirical patterns they observe.


2021 ◽  
pp. 105489
Author(s):  
Mitchell J. Rider ◽  
Oliver S. Kirsebom ◽  
Austin J. Gallagher ◽  
Erica Staaterman ◽  
Jerald S. Ault ◽  
...  
Keyword(s):  

2004 ◽  
Vol 61 (3) ◽  
pp. 476-486 ◽  
Author(s):  
Delphine Danancher ◽  
Jacques Labonne ◽  
Roger Pradel ◽  
Philippe Gaudin

In this study, capture–mark–recapture statistics were applied to spatial recapture histories to assess the intensity of fish restricted movements along the longitudinal axis of a river using a previously described model for survival and recruitment analysis. Adapting the stopover estimation method to spatial data, movement probabilities were then used to estimate space used at the population scale. This capture–recapture estimates of space used in streams (CRESUS) method may thus be seen as a complementary tool of classic home range methods and should be used to explore the consequence of behavioural strategies on population mechanisms. We propose a methodological example where movements and space use strategies of a Zingel asper (percid) population in the Beaume River (Ardèche, France) were directly estimated at the population scale taking account of the effects of different biotic or abiotic factors. Results showed differences in Z. asper space use patterns among sexes, periods of biological cycle (growing and spawning period), and types of mesohabitat. Downstream movements were more important during the spawning period and by the way the riffle was more intensively used.


Sign in / Sign up

Export Citation Format

Share Document