Resistance to degradation and effect of the herbicide glyphosate on the bacterioplankton community of a large river system dominated by agricultural activities

2020 ◽  
Vol 71 (8) ◽  
pp. 1026
Author(s):  
Claudia Piccini ◽  
Stefano Fazi ◽  
Germán Pérez ◽  
Giampiero Batani ◽  
Gabriela Martínez de la Escalera ◽  
...  

Glyphosate-based herbicides are widely used for several crops, such as transgenic soybean and forestry. The aim of this study was to determine the effect of glyphosate on the community structure of riverine bacterioplankton and to evaluate the potential of bacterioplankton to degrade the herbicide. River water to which 13C-labelled glyphosate (10, 100µgL–1) was added or not (control) was incubated for 6 days at the temperature measured in situ (20°C). Significant differences in bacterioplankton community composition, as assessed by microfluidics-based automated ribosomal intergenic spacer analysis, were found among treatments, with differences in the presence of 100µgL–1 of glyphosate being more pronounced, namely significant decreases in bacterial richness and diversity. The glyphosate degradation product aminomethylphosphonic acid (AMPA) was detected, accounting for 1.2% of glyphosate conversion in water with 100µgL–1 of 13C-labelled glyphosate, together with a significant enrichment of 13C in the bacterial biomass. These findings suggest that glyphosate had a direct detrimental effect on most bacterioplankton taxa, but enriched those that were able to degrade the herbicide. Together, the results indicate that glyphosate degradation in the river assessed would be a slow process (months–years), taking place through the AMPA degradation pathway and meaning glyphosate accumulate in the ecosystem.

2014 ◽  
Vol 31 (3) ◽  
pp. 335-349 ◽  
Author(s):  
C. Soulsby ◽  
C. Birkel ◽  
J. Geris ◽  
D. Tetzlaff

2013 ◽  
Vol 10 (1) ◽  
pp. 67-80 ◽  
Author(s):  
W. R. Hunter ◽  
A. Jamieson ◽  
V. A. I. Huvenne ◽  
U. Witte

Abstract. The Whittard Canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard Canyon, testing short-term (3–7 days) responses of sediment communities to deposition of nitrogen-rich marine (Thalassiosira weissflogii) and nitrogen-poor terrigenous (Triticum aestivum) phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs). Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time). Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest in the western branch of the Whittard Canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0–1 cm) sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal–bacterial interactions influence benthic C cycling in the Whittard Canyon, resulting in differential fates for marine and terrigenous OM.


Author(s):  
Hae-Jin Lee ◽  
Hae-Kyung Park ◽  
Se-Uk Cheon

Flow regulation is one of the most common anthropogenic factors affecting rivers worldwide. In Korea, 16 weirs were constructed along four major rivers from 2009 to 2012. This study aimed to elucidate initial changes in physical, chemical, and biological variables after the construction of consecutive weirs on the Nakdong River, a major large river system. Water quality variables and phytoplankton cell densities were investigated at eight representative sites and compared with the data recorded before the weir construction. There were spatial and temporal changes in the hydraulic retention time (HRT), total phosphorus (TP), and chlorophyll a concentrations among the eight weir sections. HRT increased after the weir construction, while TP and chlorophyll a tended to decrease from the middle to lower section of the Nakdong River. Furthermore, differences were observed in the phytoplankton community composition between 2006–2007 and 2013. There was a marginal decrease in the duration of centric diatom (Stephanodiscus hantzschii) blooms after weir construction. However, Microcystis aeruginosa proliferated more extensively during summer and autumn than it did before the weir construction. Our results suggest that changes in hydrological factors, in response to consecutive weir construction, may contribute to greater physical, chemical, and ecological variability.


2018 ◽  
Vol 93 (6) ◽  
pp. 1107-1112 ◽  
Author(s):  
Nicolas Guillerault ◽  
Géraldine Loot ◽  
Simon Blanchet ◽  
Frederic Santoul

2019 ◽  
Vol 51 ◽  
pp. 101707 ◽  
Author(s):  
Bingfen Cheng ◽  
Rui Xia ◽  
Yuan Zhang ◽  
Zhongwen Yang ◽  
Sheng Hu ◽  
...  

2018 ◽  
Vol 10 (5) ◽  
pp. 554-561 ◽  
Author(s):  
Edgar Pinto ◽  
António Gomes Soares ◽  
Isabel M. P. L. V. O. Ferreira

A novel method was developed for the sensitive, cheap and fast quantitation of glyphosate, glufosinate and aminomethylphosphonic acid (AMPA) in irrigation water by in situ derivatization and dispersive liquid–liquid microextraction (DLLME) combined with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS).


<em>Abstract.</em>—The Virgin–Moapa River system supports nine native fish species or subspecies, of which five are endemic. Woundfin <em>Plagopterus argentissimus </em>and Virgin River chub <em>Gila seminuda </em>are endemic to the main-stem Virgin River, whereas cooler and clearer tributaries are home to the Virgin spinedace <em>Lepidomeda mollispinis</em>. Moapa dace <em>Moapa coriacea </em>and Moapa White River springfish <em>Crenichthys baileyi moapae </em>are found in thermal springs that form the Moapa River, and Moapa speckled dace <em>Rhinichthys osculus moapae </em>is generally found below the springs in cooler waters. The agricultural heritage of the Virgin–Moapa River system resulted in numerous diversions that increased as municipal demands rose in recent years. In the early 1900s, trout were introduced into some of the cooler tributary streams, adversely affecting Virgin spinedace and other native species. The creation of Lake Mead in 1935 inundated the lower 80 km of the Virgin River and the lower 8 km of the Moapa River. Shortly thereafter, nonnative fishes invaded upstream from Lake Mead, and these species have continued to proliferate. Growing communities continue to compete for Virgin River water. These anthropogenic changes have reduced distribution and abundance of the native Virgin–Moapa River system fish fauna. The woundfin, Virgin River chub, and Moapa dace are listed as endangered, and the Virgin spinedace has been proposed for listing. In this paper we document how the abundance of these species has declined since the Endangered Species Act of 1973. Currently, there is no strong main-stem refugium for the Virgin River native fishes, tributary refugia continue to be shortened, and the Moapa River native fishes continue to be jeopardized. Recovery efforts for the listed and other native fishes, especially in the Virgin River, have monitored the declines, but have not implemented recovery actions effective in reversing them.


Sign in / Sign up

Export Citation Format

Share Document