Review of information on diurnal vertical migration in the bignose shark (Carcharhinus altimus)

1996 ◽  
Vol 47 (4) ◽  
pp. 605 ◽  
Author(s):  
RC Anderson ◽  
JD Stevens

The bignose shark (Carcharhinus altimus) has been described in the literature as a deep-benthic species. Evidence is presented that C. altimus is a diurnal vertical migrator. It occurs near the bottom in about 90-500 m by day. At night, at least some individuals move into shallower water or up into the pelagic zone.

1970 ◽  
Vol 20 (2) ◽  
pp. 147-154 ◽  
Author(s):  
AS Bhuiyan ◽  
S Akhter ◽  
MMA Quddus

Diurnal vertical migration of four genera of cladocerans, namely Diaphanosoma sp., Daphnia sp., Moina sp. and Bosmina sp., during March to December, 2007 showed that the number of Diaphanosoma sp. was 501 units/1 in the surface layers, 172 units/l in the middle layers and 190 units/l in the bottom layers. The yearly number of Daphnia sp. in surface, middle and bottom layerss was 362 units/l, 46 units/l and 189 units/l respectively. In surface, bottom and middle layers, the number of Moina sp. was 159, 71 and 32 units/l, respectively. Bosmina sp. was 78 units/l in surface, 31 units/l in the middle and 33 units/l in the bottom layers. The number of Diaphanosoma sp., Daphnia sp., Moina sp., Bosmina sp., were 455, 149, 259 and 358 units/l, respectively in the morning, 63, 176, 142, 43 units/l at noon and 107, 55, 28, 59 units/l, respectively in the evening. Throughout the study period the cladocerans were always abundant near the surface during morning and evening. Among the factors responsible for the diurnal movement of cadoceran, light played the most important factor. The relationship between the physico-chemical factors and the cladoceran occurrence in the pond was also explored. Key words: Cladocera; Diurnal migration; Physico-chemical parameters; Fish pond DOI: http://dx.doi.org/10.3329/dujbs.v20i2.8975 DUJBS 2011; 20(2): 147-154


2013 ◽  
Vol 70 (12) ◽  
pp. 1765-1774 ◽  
Author(s):  
P.M. Harrison ◽  
L.F.G. Gutowsky ◽  
E.G. Martins ◽  
D.A. Patterson ◽  
A. Leake ◽  
...  

Diel vertical migration (DVM) of pelagic organisms is typically attributed to bioenergetic gain, foraging opportunity, predator avoidance, and multifactor hypotheses. While a number of benthic species perform nightly migrations into shallower waters, the function of these DVMs has largely been ignored in benthic fishes. We used depth and temperature sensing telemetry to investigate DVM function in burbot (Lota lota), a freshwater benthic piscivore. We modeled the influence of season, diel period, and body size on the depth, vertical activity, migration probability, and thermal experience of 47 adult burbot over 2 years in a reservoir in British Columbia, Canada. Burbot were found to occupy significantly shallower water at night than during the day. Our results, which showed elevated nightly activity and a seasonal size-structured depth distribution during DVMs, suggest these migrations likely provide a feeding opportunity “window” for this nocturnal predator, constrained by predation or cannibalism threats to smaller individuals. The observed thermal experience patterns suggest DVM may also provide a seasonal bioenergetic advantage. Our detection of within-individual plasticity in migration strategy is indicative of a partial migration. Taken together, our results suggest a multifactor DVM hypothesis: a dynamic trade-off among bioenergetic advantage, foraging opportunity, and predation threat.


2019 ◽  
Vol 41 (2) ◽  
pp. 127-141 ◽  
Author(s):  
Julie Meilland ◽  
Michael Siccha ◽  
Manuel F G Weinkauf ◽  
Lukas Jonkers ◽  
Raphael Morard ◽  
...  

Oikos ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Alexis Onzo ◽  
Rachid Hanna ◽  
Ignace Zannou ◽  
Maurice W. Sabelis ◽  
John S. Yaninek

1982 ◽  
Vol 39 (2) ◽  
pp. 326-334 ◽  
Author(s):  
D. W. Kulka ◽  
S. Corey ◽  
T. D. Iles

Seven species of euphausiids were found in the Bay of Fundy: Meganyctiphanes norvegica, Thysanoessa inermis, T. longicaudata, T. raschii, T. gregaria, Euphausia krohnii, and Nematoscelis megalops (listed in descending order of abundance). A high-intensity sampling scheme during November and March facilitated detailed distributional studies which revealed that M. norvegica, T. inermis, and T. longicaudata each had a specific stationary center of abundance in the study area, and each species performed a different pattern of diurnal vertical migration. Meganyctiphanes norvegica formed 90% (constituting 70 kt) of the euphausiids. The last four species were occasional immigrants from areas south of the Bay of Fundy. From the relationships between life history stages, vertical migration patterns, distribution, and currents in the Fundy Region, we suggest that these euphausiid species form stocks.Key words: euphausiids, Meganyctiphanes norvegica, Thysanoessa inermis, Thysanoessa longicaudata, biomass, community structure, stock, Bay of Fundy


2013 ◽  
Vol 35 (3) ◽  
pp. 542-552 ◽  
Author(s):  
Tomoyuki Shikata ◽  
Shigeru Matsunaga ◽  
Mineo Iseki ◽  
Hiroyo Nishide ◽  
Sho-Ichi Higashi ◽  
...  

2007 ◽  
Vol 64 (12) ◽  
pp. 1747-1760 ◽  
Author(s):  
Espen Strand ◽  
Geir Huse

We investigate the trade-offs associated with vertical migration and swimming speed of Atlantic cod (Gadus morhua) using an adaptive individual-based model. Simulations with varying distribution and occurrence of prey, with and without swimbladder constraints, and visual predation were performed. Most simulations resulted in cod migrations between the bottom and pelagic zones. In simulations with high probability of encountering pelagic prey, the cod spent the daytime in the pelagic zone, moving to the bottom to feed only when no pelagic prey were encountered. At night the cod stayed in the pelagic zone to attain neutral buoyancy. In simulations with low occurrence of pelagic prey or high visual predation pressure, the cod remained at the bottom feeding on the consistently present benthic prey. If the pelagic prey occurred far above the sea floor or there were no benthic prey, the cod abandoned all bottom contact. The study thus predicts that the probability of encountering energy-rich pelagic prey is the key factor in driving vertical migration in adult cod. Buoyancy regulation is further shown to be an important constraint on vertical migration.


Sign in / Sign up

Export Citation Format

Share Document