gulf of riga
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 172 ◽  
pp. 112860
Author(s):  
Juris Aigars ◽  
Marta Barone ◽  
Natalija Suhareva ◽  
Ieva Putna-Nimane ◽  
Inta Dimante-Deimantovica

2021 ◽  
Vol 18 ◽  
pp. 88-93
Author(s):  
Jānis Lapinskis

Finding a the most appropriate solution for the problems caused by coastal eros ion is very important, as erosion prevention and habitat management measures must promote the restoration of the natural balance (order of things before anthropogenic disturbances) and restore the coastal status quo as much as possible [6; 2]. Dune fences are a very widespread erosion management tool on developed sandy coastal areas due to ease of installation, inexpensiveness, and generally positive public attitude [1]. Effectiveness and impact of fences have also been studied in many places around the world, however previous studies in Latvia have been very limited and episodic [16]. This article shows the observed dune and high beach area evolution of the coast in Riga, a somewhat developed coastal section on the top of the Gulf of Riga, Latvia, over a 4-year period from 2017 to 2020. Dune fences were installed along several short, but significantly disturbed sections of coast in 2018 and 2019. Implementation area is one of the busiest parts of the coast of Latvia dealing with the highest level of anthropogenic disturbance. Data has been derived from cross-shore transects (n=12) along the 17 km long coastal section between Daugava and Gauja river mouths. The findings generally indicate a very intense initial wind driven sand accumulation in the target areas compared to the background situation. It also seems that such a method may in the longer term be responsible for reduction of the primary dune height and beach width.


2021 ◽  
Vol 9 (8) ◽  
pp. 915
Author(s):  
Muhammad Saladin Prawirasasra ◽  
Mirko Mustonen ◽  
Aleksander Klauson

Passive acoustic monitoring (PAM) is widely used as an initial step towards an assessment of environmental status. In the present study, underwater ambient sound recordings from two monitoring locations in marine-protected areas (MPAs) of the Gulf of Riga were analysed. Both locations belong to the natural habitat of pinnipeds whose vocalisations were detected and analysed. An increase of vocal activity during the mating period in the late winter was revealed, including percussive signallings of grey seals. The ambient sound spectra showed that in the current shallow sea conditions ship traffic noise contributed more in the higher frequency bands. Thus, a 500 Hz one-third octave band was chosen as an indicator frequency band for anthropogenic noise in the monitoring area. It was shown that changes in the soundscape occurring during the freezing period create favourable conditions for ship noise propagation at larger distances. Based on the monitoring data, the environmental risks related to the anthropogenic sound around the monitoring sites were considered as low. However, further analysis showed that for a small percentage of time the ship traffic can cause auditory masking for the ringed seals.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1881
Author(s):  
Astra Labuce ◽  
Anda Ikauniece ◽  
Iveta Jurgensone ◽  
Juris Aigars

Zooplankton as an essential component in the pelagic food web are directly linked to pelagic ecosystem functioning. Therefore, comprehension of zooplankton functional diversity (FD) and its responses to environmental changes is crucial for ecosystem-based view. To identify FD responses to environmental drivers, we analysed 25 years of summer data on the brackish mesozooplankton community (including rotifers, cladocerans, copepods, and meroplankton) from the eutrophied, shallow Gulf of Riga (Baltic Sea). We established that within the Gulf of Riga, open waters are notably different from coastal regions based on the dynamics of hydrological conditions (temperature, salinity), cyanobacterial dominance, abundance of mesozooplankton functional groups, and mesozooplankton FD indices. Competition over resources in combination with hydrodynamic features and predation by adult herring were seemingly the central structuring mechanism behind the dynamics of FD metrics (richness, evenness, divergence, and dispersion) within coastal mesozooplankton communities. Whereas predation by young herring was an important driver only for the mesozooplankton communities in the open waters. Cyanobacterial dominance, used as a proxy for food quality and availability, had no effect on summer mesozooplankton FD metrics.


2021 ◽  
Author(s):  
Stella-Theresa Stoicescu ◽  
Jaan Laanemets ◽  
Taavi Liblik ◽  
Māris Skudra ◽  
Oliver Samlas ◽  
...  

Abstract. The Gulf of Riga is a relatively shallow bay connected to the deeper central Baltic Sea (Baltic Proper) via straits with sills. The decrease in the near-bottom oxygen levels from spring to autumn is a common feature in the gulf, but in 2018, hypoxia was exceptional. We analyzed temperature, salinity, oxygen, and nutrient data collected in 2018 and historical data available from environmental databases. Forcing data from the study year were compared with their long-term means and variability. The year 2018 was exceptional due to occasionally dominating north-easterly winds supporting the inflow of saltier waters from the Baltic Proper and meteorological conditions causing fast development of thermal stratification in spring. Existing stratification hindered vertical transport between the near-bottom layer (NBL) and the water layers above it. The estimated oxygen consumption rate at the sediment surface in spring-summer 2018 was about 1.7 mmol O2 m−2 h−1 that exceeded the oxygen input to the NBL due to advection and mixing. We suggest that the observed pronounced oxygen depletion was magnified by the prolonged stratified season and haline stratification in the deep layer that maintained a decreased water volume between the seabed and the pycnocline. The observed increase in phosphate concentrations in the NBL in summer 2018 suggests a significant sediment phosphorus release in hypoxic conditions counteracting the mitigation measures to combat eutrophication. We conclude, if similar meteorological conditions as in 2018 could occur more frequently in the future, such extensive hypoxia would be more common in the Gulf of Riga and other coastal basins with similar morphology and human-induced elevated input of nutrients.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1785
Author(s):  
Igor Medvedev ◽  
Alisa Medvedeva

The present study examines the seasonal and decadal changes of the variance of the synoptic (periods from 2 days to 30 days) and mesoscale (periods from 2 h to 2 days) sea level oscillations in the Baltic Sea. Long-term hourly sea level records were used at 12 tide gauges located in different parts of the sea. We used spectral analysis to estimate the variance for different time scales. The spectral density of sea level oscillations in the Baltic Sea has maximum values in winter when the cyclonic activity in the atmosphere is more intensive. The maximum variances of synoptic σsyn2  and mesoscale σmes2 sea level oscillations are observed in winter, except for the heads of the Gulf of Finland (Gorny Institute) and Gulf of Riga (Pärnu), where the absolute maximum of σsyn2 is reached in November. The variances σsyn2 and σmes2 from November to February are 2–3 and 5 times higher than in the summer. The values of σsyn2 and σmes2 are characterized by high correlation up to 0.7–0.75 with wind variations and atmospheric indices (NAO, AO, and SCAND) in winter and low correlation in summer. The zonal wind and σmes2 in Gorny Institute are characterized by wide areas of high coherence at periods of 0.7–4 years. At Gedser, σsyn2 decreased by 19%, and at Ratan it increased by 17% over 90 years. The values of σmes2 over 90 years increased by 32% at Klagshamn, 36% at Ratan, and up to 60% at Kungsholmsfort.


Author(s):  
Henn Ojaveer ◽  
Riina Klais-Peets ◽  
Heli Einberg ◽  
Gunta Rubene

Scientific interest in the dynamics of fish recruitment dates back to the beginning of the 20th century. Since then, several studies have shown that the environment may have a stronger effect on recruitment (R) compared to that of the spawning stock biomass (SSB). By combining a suite of methods designed to detect the non-linear, non-stationary and interactive relationships, we have re-evaluated the potential drivers and their interactions responsible for the multiannual dynamics of the recruitment dynamics of the Gulf of Riga (Baltic Sea) spring spawning herring population at the longest time-span to date (1958-2015) allowing coverage of variable ecosystem conditions. R was affected significantly by prey density and the severity of the first winter. Although SSB was not a good predictor of R, adding interaction with SSB significantly improved the model, hence the effect of the two environmental variables on R was modulated by SSB. While temporal changes in the environment-R relationship were generally gradual, several abrupt changes were evident in the strength of these relationships. In addition, non-stationary, linear and non-linear relationships were observed.


2021 ◽  
Vol 21 (4) ◽  
pp. 1279-1296
Author(s):  
Nadezhda Kudryavtseva ◽  
Tarmo Soomere ◽  
Rain Männikus

Abstract. Analysis and prediction of water level extremes in the eastern Baltic Sea are difficult tasks because of the contribution of various drivers to the water level, the presence of outliers in time series, and possibly non-stationarity of the extremes. Non-stationary modeling of extremes was performed to the block maxima of water level derived from the time series at six locations in the Gulf of Riga and one location in the Baltic proper, Baltic Sea, during 1961–2018. Several parameters of the generalized-extreme-value (GEV) distribution of the measured water level maxima both in the Baltic proper and in the interior of the Gulf of Riga exhibit statistically significant changes over these years. The most considerable changes occur to the shape parameter ξ. All stations in the interior of the Gulf of Riga experienced a regime shift: a drastic abrupt drop in the shape parameter from ξ≈0.03±0.02 to ξ≈-0.36±0.04 around 1986 followed by an increase of a similar magnitude around 1990. This means a sudden switch from a Fréchet distribution to a three-parameter Weibull distribution and back. The period of an abrupt shift (1986–1990) in the shape parameters of GEV distribution in the interior of the Gulf of Riga coincides with the significant weakening of correlation between the water level extremes and the North Atlantic Oscillation (NAO). The water level extremes at Kolka at the entrance to the Gulf of Riga reveal a significant linear trend in shape parameter following the ξ≈-0.44+0.01(t-1961) relation. There is evidence of a different course of the water level extremes in the Baltic proper and the interior of the Gulf of Riga. The described changes may lead to greatly different projections for long-term behavior of water level extremes and their return periods based on data from different intervals. Highlights. Water level extremes in the eastern Baltic Sea and the Gulf of Riga are analyzed for 1961–2018. Significant changes in parameters of generalized-extreme-value distribution are identified. Significant linear trend in shape parameter is established at Kolka. The shape parameter changes in a step-like manner. The shape parameter of GEV has regime shifts around 1986 and 1990 in the gulf.


Author(s):  
Oksana Fokina ◽  
Dace Grauda ◽  
Ingrīda Puriņa ◽  
Ieva Bārda ◽  
Isaak Rashal

AbstractSamples of Limecola balthica with normal and deformed shells were collected from ten sites throughout the Gulf of Riga. Genetic diversity was evaluated by the retrotransposon-based iPBS method. Samples had close mutual genetic distances, which showed that all of them belong to one wider population of the Gulf of Rīga. No direct relationship between the activity of retrotransposons and deformation of shells was found.


Sign in / Sign up

Export Citation Format

Share Document