Ecology of black cockatoos at a mine-site in the eastern jarrah-marri forest, western Australia.

2013 ◽  
Vol 19 (1) ◽  
pp. 76 ◽  
Author(s):  
J G H Lee ◽  
H C Finn ◽  
M C Calver

Three threatened black cockatoos inhabit the Jarrah Eucalyptus marginata-Marri Corymbia calophylla forest of southwestern Australia: Baudin’s Cockatoo Calyptorhynchus baudinii, Carnaby’s Cockatoo C. latirostris, and Forest Redtailed Black Cockatoo C. banksii naso [FRTBC]. Their local ecology in relation to anthropogenic disturbance is poorly known, hampering effective conservation management. Therefore we studied their group size, site occupancy patterns, habitat use, and food plants at a mine-site and its surrounds in the eastern forest over three years. FRTBC showed similar group sizes and occupancy across seasons, suggesting year-round residency and no marked seasonality in movements and grouping patterns. In contrast, Carnaby’s Cockatoos were up to twice as abundant in spring and summer, indicating migrating or transient flocks and some year-round residents. Few Baudin’s Cockatoos were present in summer, but their abundance increased at other times. All three cockatoos were observed in modified or humanmade habitats such as mine-site rehabilitation, farm paddocks, and pine plantations. Carnaby’s Cockatoos used the broadest habitat range. We documented feeding on 16 plant species, with Carnaby’s Cockatoos eating at least 10. Examination of feeding residues as well as observations of behaviour were essential to obtain a complete picture of feeding. Current mine-site rehabilitation protocols provide food for all three black cockatoos within a decade and should continue to do so long-term if Marri is maintained in the seed mix. However, because climate change scenarios predict declining rainfall over much of southwestern Australia, the plant species used to revegetate mine-sites and other landscapes may need to be reconsidered. For areas that do not specify restoring a jarrah forest landscape, the selective use of exotic or non-endemic flora better adapted to lower rainfall conditions may be an option.

2013 ◽  
Vol 61 (2) ◽  
pp. 119 ◽  
Author(s):  
Jessica Lee ◽  
Hugh Finn ◽  
Michael Calver

Land clearing threatens three black cockatoo species (forest red-tailed black cockatoo, (Calyptorhynchus banksii naso), Carnaby’s cockatoo (Calyptorhynchus latirostris), and Baudin’s cockatoo (Calyptorhynchus baudinii) endemic to south-western Australia, so revegetation is important to their recovery. Over three years we studied cockatoo activity in 7–14-year-old mine-site rehabilitation in the region’s jarrah (Eucalyptus marginata)–marri (Corymbia calophylla) forest to give the most detailed description to date of the use of rehabilitation by the birds. Pits varied floristically and structurally (despite similar rehabilitation prescriptions), but interior and exterior plots (100 m2) were similar within pits. Using feeding traces (e.g. chewed husks), and behavioural observations we confirmed feeding within eight years of revegetation. Plots containing feeding trace were similar to plots without, so factors determining black cockatoo feeding may not be apparent at small scales. Returning food resources reflected vegetation succession, with regenerating marri and fast-maturing proteaceous species providing most food. Carnaby’s cockatoo ate Banksia and Hakea seeds and Baudin’s cockatoo and the forest red-tailed black cockatoo consumed marri seeds. Banksia squarrosa, Hakea undulata, H. prostrata and marri were common foods in all years. Revegetation efforts elsewhere should consider these species, within the constraints of rehabilitation protocols addressing multiple aims.


2016 ◽  
Vol 43 (2) ◽  
pp. 93 ◽  
Author(s):  
Tim S. Doherty ◽  
Briana N. Wingfield ◽  
Vicki L. Stokes ◽  
Michael D. Craig ◽  
Jessica G. H. Lee ◽  
...  

Context Provision of key habitat resources is essential for effectively managing species that have specific ecological requirements and occur in production landscapes. Threatened black cockatoos in the jarrah (Eucalyptus marginata) forest of Western Australia have a wide range, so their conservation requires support from all land tenures, not just reserves. Mining in the jarrah forest temporarily removes cockatoo feeding habitat, so it is important to understand how cockatoos exploit revegetated areas for food resources. Aims We aimed to determine whether there were successional patterns in cockatoo feeding activity in revegetation aged from 4 to 23 years at three mine sites in the jarrah forest in south-western Australia. Methods We surveyed 232 plots in revegetation to document (1) structural and floristic variation in vegetation across mine sites and revegetation ages, (2) differences in cockatoo feeding activity across mine sites and revegetation ages on the basis of feeding residues and (3) any edge effect reflecting preferential use of vegetation at the interior or exterior of mine pits. We also documented the frequency of occurrence of cockatoo food plants and feeding residues in 480 plots in unmined forest to compare with revegetated areas. Key results Marri (Corymbia calophylla) and jarrah were commonly consumed in unmined forest and Banksia and Hakea species were also fed on to a lesser extent. Revegetated mine pits provided food within 4 years and continued to do so up until the oldest plots studied (23 years). The relative importance of food plants shifted from proteaceous species in young revegetation to myrtaceous species in intermediate to older revegetation. However, extent of feeding on myrtaceous species in older revegetation did not equate to feeding rates in unmined forest, with lower frequencies recorded in revegetation. Conclusions Black cockatoos fed in revegetation at all three mine sites, despite variations in vegetation age, structure and floristics. Feeding on proteaceous and myrtaceous food plants occurred within 4 and 7 years of revegetation being established, respectively, indicating that some food resources are restored quickly after mining disturbance of the jarrah forest. Implications Our results emphasise the importance of monitoring fauna recolonisation over appropriate time scales, to understand how successional processes in revegetation influence fauna population persistence in production landscapes.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 806
Author(s):  
Xingyan Lu ◽  
Keiko Yamaji ◽  
Toshikatsu Haruma ◽  
Mitsuki Yachi ◽  
Kohei Doyama ◽  
...  

For growing plants at mine sites, plant species that accumulate metals in tissues and are tolerant to high metal concentrations should be selected from the perspective of phytostabilization. However, the eco-chemical or elemental information of the plant species at the mine sites is limited. The purpose of this study was to identify plants that can adapt to natural growth at mine sites, via: (1) vegetation survey, (2) elemental analysis in soil and plants, and (3) detoxicant detection in plant cells. Our vegetation survey indicated that plants growing at our study site are consistent with plant species confirmed at other mine sites in previous reports. A. indica var. maximowiczii and F. sachalinensis, present at the mine site, highly accumulated Fe, Al, and Cu in the roots, indicating their metal tolerance. Furthermore, A. indica var. maximowiczii produced detoxicants such as chlorogenic acid and 3,5-dicaffeoylquinic acid in the roots, which exhibited high antioxidative activity that would play an important role in metal tolerance in A. indica var. maximowiczii. This study will be effective in providing fundamental information on phytostabilization at mine sites.


2021 ◽  
Vol 129 ◽  
pp. 107919
Author(s):  
Wenqin Tu ◽  
Qinli Xiong ◽  
Xiaoping Qiu ◽  
Yongmei Zhang

Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 231 ◽  
Author(s):  
Kenneth G. Evans

Erosion of rehabilitated mines may result in landform instability, which in turn may result in exposure of encapsulated contaminants, elevated sediment delivery at catchment outlets, and subsequent degradation of downstream water quality. Rehabilitation design can be assessed using erosion and hydrology models calibrated to mine site conditions. Incision rates in containment structures can be quantified using 3-dimensional landform evolution simulation techniques. Sediment delivery at catchment outlets for various landform amelioration techniques can be predicted using process-based and empirical erosion-prediction models and sediment delivery ratios. The predicted sediment delivery can be used to estimate an average annual stream sediment load that can, in turn, be used to assess water quality impacts. Application of these techniques is demonstrated through a case study applied to a proposed rehabilitation design option for the Energy Resources of Australia Ltd (ERA) Ranger Mine in the Northern Territory of Australia.


Spoil to Soil ◽  
2017 ◽  
pp. 203-213
Author(s):  
Ramesh Thangavel ◽  
Rajasekar Karunanithi ◽  
Hasintha Wijesekara ◽  
Yubo Yan ◽  
Balaji Seshadri ◽  
...  

2013 ◽  
Vol 13 (57) ◽  
pp. 7428-7451
Author(s):  
A Acipa ◽  
◽  
M Kamatenesi-Mugisha ◽  
H Oryem-Origa

Wild food plants play an important role in the diet of inhabitants of Oyam District. Some of these plants are drought -resistant and gathered throughout the year . These wild foods are an important source of nutrients. However, there is a lack of comprehensive data re garding the nutrient content s of these indigenous plants. The purpose of this study was to document and assess the nutrient and mineral content s of the selected food plants. Ethnobotanical surveys were used to collect data through formal and informal inter views and focused group discussions. Voucher specimens were collected during field excursions and taken to Makerere Herbarium for proper identification . Nutrients and mineral analyses of wild and cultivated fruits, seeds, underground organs and vegetables from Ngai and Otwal sub counties were carried out using known procedures. They were analysed for mineral nutrients such as calcium, iron, potassium, and phosphorus concentrations. Additionally nutrients such proteins, beta carotene, vitamin C and dietary fibre were determined . On average, vegetables were found to be richer in organic nutrients and minerals followed by fruits and seeds in that order . Generally the wild food plant species were found to be richer sources of mineral nutrient than their cultivated relatives. F or example , the highest concentration of calcium 867.59 mg/100g was found in Acalypha bipartita leaves compared to 294.18 mg/100g in Cleome gynandra . Plant species that showed high iron contents [>30% ] were leaves of swamp hibiscus , African spider flowers , fruits of Tamarind , Black night shade and Jews mallow . It was also noted that among the food plant species analysed, fruits were low in nutrients and mineral elements. Some of these food plants were also considered to have medicinal properties by the locals such as African spider flower, Rattle pod among others. However, it should be noted that there is a general decline in the consumption of wild plants , despite the apparent high nutritional values . T he conservation of wild food plants is not taking place among the communities in the study area, thus the poor rural communities who are limited on balancing their diet could be faced with diseases associated with nutrient deficiencies .


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250857
Author(s):  
Laura A. Pulscher ◽  
Ellen S. Dierenfeld ◽  
Justin A. Welbergen ◽  
Karrie A. Rose ◽  
David N. Phalen

Habitat loss and alteration are two of the biggest threats facing insular flying-foxes. Altered habitats are often re-vegetated with introduced or domestic plant species on which flying-foxes may forage. However, these alien food plants may not meet the nutritional requirements of flying-foxes. The critically endangered Christmas Island flying-fox (CIFF; Pteropus natalis) is subject to habitat alteration and the introduction of alien food plants, and therefore is a good model species to evaluate the potential impact of alien plant species on insular flying-foxes. In this study, we evaluated nutritional content of native food plants to determine how flying-foxes historically met their nutritional requirements. Furthermore, we compared the nutritional content of native and alien fruits to predict possible impacts of alien plants on insular flying-foxes. Native and alien fruits and flowers, and native foliage (leaves, petals, and petioles) commonly consumed by the CIFF were collected and evaluated for soluble sugars, crude protein, non-fiber carbohydrates, and nine minerals. Evaluation of native food plants suggests that flying-foxes meet energy requirements by consuming fruit and nectar. However, fruit and nectar are low in protein and essential minerals required for demanding life periods; therefore, flying-foxes likely supplement their diets with pollen and foliage. Thus, flying-foxes require a diverse array of plants to meet their nutritional requirements. Compared to native fruits, alien fruits contained significantly higher non-fiber carbohydrates, and this may provide an important energy source, particularly from species that bear fruit year-round. Median mineral concentrations in alien fruit species, however, were deficient compared to native fruits, suggesting major (or even seasonal) shifts in the proportion of alien species in the CIFF diet could lead to nutritional imbalances. This study confirms the need to quantify nutritional parameters in addition to feeding ecology when evaluating habitat quality to inform conservation actions that can be applied both locally and globally.


Sign in / Sign up

Export Citation Format

Share Document