scholarly journals The Response of Closed Channels to Wind Stresses

1965 ◽  
Vol 18 (3) ◽  
pp. 219 ◽  
Author(s):  
LM Fitzgerald ◽  
WW Mansfield

The surface velocity, surface slope, and velocity profile produced by the application of a wind stress to the smooth surface of a closed channel have been determined by adapting the empirical laws of flow in smooth tubes. The estimated responses agree well with the available experimental data.

2016 ◽  
Author(s):  
Ignacio Hermoso de Mendoza ◽  
Jean-Claude Mareschal ◽  
Hugo Beltrami

Abstract. A one-dimensional (1-D) ice flow and heat conduction model is used to calculate the temperature and heat flux profiles in the ice and to constrain the parameters characterizing the ice flow and the thermal boundary conditions at the Dome C drilling site in East Antarctica. We use the reconstructions of ice accumulation, glacier height and air surface temperature histories as boundary conditions to calculate the ice temperature profile. The temperature profile also depends on a set of poorly known parameters, the ice velocity profile and magnitude, basal heat flux, and air-ice surfaces temperature coupling. We use Monte Carlo methods to search the parameters' space of the model, compare the model output with the temperature data, and find probability distributions for the unknown parameters. We could not determine the sliding ratio because it has no effect on the thermal profile, but we could constrain the flux function parameter p that determines the velocity profile. We determined the basal heat flux qb = 49.0  ± 2.7 (2σ)m W m−2, almost equal to the apparent value. We found an ice surface velocity of vsur = 2.6 ± 1.9 (2σ)m y−1 and an air-ice temperature coupling of 0.8 ± 1.0(2σ)K. Our study confirms that the heat flux is low and does not destabilize the ice sheet in east Antarctica.


1979 ◽  
Vol 101 (2) ◽  
pp. 233-245 ◽  
Author(s):  
J. De Ruyck ◽  
C. Hirsch ◽  
P. Kool

An axial compressor end-wall boundary layer theory which requires the introduction of three-dimensional velocity profile models is described. The method is based on pitch-averaged boundary layer equations and contains blade force-defect terms for which a new expression in function of transverse momentum thickness is introduced. In presence of tip clearance a component of the defect force proportional to the clearance over blade height ratio is also introduced. In this way two constants enter the model. It is also shown that all three-dimensional velocity profile models present inherent limitations with regard to the range of boundary layer momentum thicknesses they are able to represent. Therefore a new heuristic velocity profile model is introduced, giving higher flexibility. The end-wall boundary layer calculation allows a correction of the efficiency due to end-wall losses as well as calculation of blockage. The two constants entering the model are calibrated and compared with experimental data allowing a good prediction of overall efficiency including clearance effects and aspect ratio. Besides, the method allows a prediction of radial distribution of velocities and flow angles including the end-wall region and examples are shown compared to experimental data.


REAKTOR ◽  
2017 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
L. Buchori ◽  
Y. Bindar ◽  
D. Sasongko ◽  
IGBN Makertihartha

Generally, the momentum equation of fluid flow in porous media was solved by neglecting the terms of diffusion and convection such as Ergun, Darcy, Brinkman and Forchheimer models. Their model primarily applied for laminar flow. It is true that these model are limited to condition whether the models can be applied. Analytical solution for the model type above is available only for simple one-dimensional cases. For two or three-dimentional problem, numerical solution is the only solution. This work advances the flow model in porous media and provide two-dimentional flow field solution in porous media, which includes the diffusion and convection terms. The momentum lost due to flow and porous material interaction is modeled using the available  Brinkman-Forchheimer equation. The numerical method to be used is finite volume method. This method is suitable for the characteristic of fluid  flow in porous media which is averaged by a volume base. The effect of the solid and fluid interaction in porous  media is the basic principle of the flow model in morous media. The Brinkman-Forchheimer consider the momentum lost term to be determined by a quadratic function of the velocity component. The momentum and the continuity equation are solved for two-dimentional cylindrical coordinat . the result were validated with the experimental data. The velocity of the porous media was treated to be radially oscillated. The result of velocity profile inside packing show a good agreement in their trend with the Stephenson and Steward experimental data. The local superficial  velocity attains its global maximum and minimum at distances near 0.201 and 0.57 particle diameter, dp. velocity profile below packing was simulated. The result were validated with Schwartz and Smith experimental data. The result also show an excellent agreement with those experimental data.Keywords : finite volume method, porous media, flow distribution, velocity profile


1970 ◽  
Vol 9 (56) ◽  
pp. 195-212 ◽  
Author(s):  
R. Haefeli

All the measurements involved concern the glacier tongue between its end and 2 600 m a.s.l. The total loss of volume of the Unteraargletscher since its last maximum advance (1871) is estimated to be 2.4 km3, which corresponds to a mean surface lowering of 0.67 m/year (referred to a total glacierized area of c. 40 km2 on average). The considerable slowing down of the glacier flow velocity over the 125 years is primarily attributable to the marked decrease in the sliding component, whereas the shear component has only changed slightly. This behaviour is connected with the fact that the decrease in ice thickness has been accompanied by an increase in surface slope, so that the two effects on the shear component partially compensate each other. The seasonal variations in surface velocity were measured simultaneously at two profiles by Agassiz and his team in 1845/46. These variations are due to the variable amount of melt water and the resulting variations in hydrostatic pressure in the contact zone between ice and bedrock, in which the plastic contraction of the water channels plays a decisive role. This leads to the problem of water circulation in the interior of a glacier and its importance in the sliding process. Finally a simple method for the approximate calculation of the longitudinal profile of the surface of a glacier tongue in a steady state and with constant ablation is indicated.


2019 ◽  
Vol 877 ◽  
pp. 495-533 ◽  
Author(s):  
A. V. Shmyrov ◽  
A. I. Mizev ◽  
V. A. Demin ◽  
M. I. Petukhov ◽  
D. A. Bratsun

We study, both experimentally and theoretically, the fluid flow driven by a thermocapillary effect applied to a partially contaminated interface in a two-dimensional slot of finite extent. The contamination is due to the presence of an insoluble surfactant which is convected by the flow forming a stagnant zone by the colder edge of the interface. The thermocapillary surface stress is produced by a special optocapillary system, which makes it possible, first, to get an almost linear temperature profile along the interface and, second, to apply a surface pressure large enough to force the surfactant to experience a phase transition to a more condensed state. This enabled us for the first time since the release of the paper by Carpenter & Homsy (J. Fluid Mech., vol. 155, 1985, pp. 429–439) to test experimentally their theoretical predictions and obtain new results for the case when the contamination exists simultaneously in two phase states within the interface. We show that one part of the surface is free of surfactant and subject to vigorous thermocapillary flow, while another part is stagnant and subject to creeping flow with a surface velocity which is approximately two orders of magnitude smaller. We found that the extent of the stagnant zone theoretically predicted earlier does not coincide with the newly obtained experimental data. In this paper, we suggest analytical and numerical solutions for the position of the edge of the stagnation zone, which are in perfect agreement with the experimental data.


1969 ◽  
Vol 73 (698) ◽  
pp. 143-147 ◽  
Author(s):  
M. K. Bull

Although a numerical solution of the turbulent boundary-layer equations has been achieved by Mellor and Gibson for equilibrium layers, there are many occasions on which it is desirable to have closed-form expressions representing the velocity profile. Probably the best known and most widely used representation of both equilibrium and non-equilibrium layers is that of Coles. However, when velocity profiles are examined in detail it becomes apparent that considerable care is necessary in applying Coles's formulation, and it seems to be worthwhile to draw attention to some of the errors and inconsistencies which may arise if care is not exercised. This will be done mainly by the consideration of experimental data. In the work on constant pressure layers, emphasis tends to fall heavily on the author's own data previously reported in ref. 1, because the details of the measurements are readily available; other experimental work is introduced where the required values can be obtained easily from the published papers.


1970 ◽  
Vol 9 (56) ◽  
pp. 195-212 ◽  
Author(s):  
R. Haefeli

All the measurements involved concern the glacier tongue between its end and 2 600 m a.s.l. The total loss of volume of the Unteraargletscher since its last maximum advance (1871) is estimated to be 2.4 km3, which corresponds to a mean surface lowering of 0.67 m/year (referred to a total glacierized area ofc. 40 km2on average). The considerable slowing down of the glacier flow velocity over the 125 years is primarily attributable to the marked decrease in the sliding component, whereas the shear component has only changed slightly. This behaviour is connected with the fact that the decrease in ice thickness has been accompanied by an increase in surface slope, so that the two effects on the shear component partially compensate each other. The seasonal variations in surface velocity were measured simultaneously at two profiles by Agassiz and his team in 1845/46. These variations are due to the variable amount of melt water and the resulting variations in hydrostatic pressure in the contact zone between ice and bedrock, in which the plastic contraction of the water channels plays a decisive role. This leads to the problem of water circulation in the interior of a glacier and its importance in the sliding process. Finally a simple method for the approximate calculation of the longitudinal profile of the surface of a glacier tongue in a steady state and with constant ablation is indicated.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 126
Author(s):  
Rafik Absi

The flow in rivers is turbulent. The main parameter related to turbulence in rivers is the eddy viscosity, which is used to model a turbulent flow and is involved in the determination of both velocities and sediment concentrations. A well-known and largely used vertical distribution of eddy viscosity in free surface flows (open channels and rivers) is given by the parabolic profile that is based on the logarithmic velocity profile assumption and is valid therefore only in the log-law layer. It was improved thanks to the log-wake law velocity profile. These two eddy viscosities are obtained from velocity profiles, and the main shortcoming of the log-wake profile is the empirical Coles’ parameter. A more rigorous and reliable analytical eddy viscosity model is needed. In this study, we present two analytical eddy viscosity models based on the concepts of velocity and length scales, which are related to the exponentially decreasing turbulent kinetic energy (TKE) function and mixing length, namely, (1) the exponential-type profile of eddy viscosity and (2) an eddy viscosity based on an extension of von Karman’s similarity hypothesis. The eddy viscosity from the second model is -independent, while the eddy viscosity from the first model is -dependent (where is the friction Reynolds number). The proposed analytical models were validated through computation of velocity profiles, obtained from the resolution of the momentum equation and comparisons to experimental data. With an additional correction function related to the damping effect of turbulence near the free surface, both models are similar to the log-wake-modified eddy viscosity profile but with different values of the Coles’ parameter, i.e., for the first model and for the second model. These values are similar to those found in open-channel flow experiments. This provides an explanation about the accuracy of these two analytical models in the outer part of free surface flows. For large values of ( > 2000), the first model becomes independent, and the two coefficients reach asymptotic values. Finally, the two proposed eddy viscosity models are validated by experimental data of eddy viscosity.


Author(s):  
O. G. Chkhetiani ◽  
N. V. Vazaeva

A simple model for the development of submesoscale perturbations in the atmospheric boundary layer (ABL) is proposed. The growth of perturbations is associated with the shear algebraic instability of the wind velocity profile in the atmospheric boundary layer (ABL). For the scales of optimal perturbations (streaks) in the lower part of the ABL, estimates of their sizes were obtained about 100-200 m vertically and 300-600 m horizontally. Similar scales are noted for experimental data on the structure of the wind field in the lower part of the ABL, obtained in 2017, 2018 in the summer at the Tsimlyansk Scientific Station at the acoustic sounding of the atmosphere by the Doppler three-component minisodar of high resolution.


Sign in / Sign up

Export Citation Format

Share Document