scholarly journals Non-Equilibrium Ionization Growth In Molecular Hydrogen

1966 ◽  
Vol 19 (6) ◽  
pp. 795 ◽  

A thin-film cathode is used in an examination of the spatial growth of ionization in molecular hydrogen at high values of the parameter E/p (E is the electric field strength in V/cm; p is the gas pressure in torr at 0�C). Particular attention is given to

2013 ◽  
Vol 736 ◽  
Author(s):  
A. W. Wray ◽  
D. T. Papageorgiou ◽  
O. K. Matar

AbstractWe examine the dynamics of a thin film flowing under gravity down the exterior of a vertically aligned inner cylinder, with a co-aligned, concentric cylinder acting as an outer electrode; the space between the outer cylinder and the film is occupied by an inviscid gas. The stability of the interface is studied when it is subjected to an electric field, applied by imposing a potential difference between the two cylinders. Leaky-dielectric theory is used in conjunction with asymptotic reduction, in the large-conductivity limit, to derive a single, two-dimensional evolution equation for the interfacial location, which accounts for gravity, capillarity, and electrostatic effects. A linear stability analysis is carried out which shows that non-axisymmetric modes become more dominant with increasing electric field strength. Our fully two-dimensional numerical solutions of the evolution equation demonstrate qualitative agreement between the trends observed in the nonlinear regime and those predicted by linear theory. These numerical solutions also show that, depending on the electric field strength and the relative proximity of the outer electrode, the interface either remains spatially uniform, or exhibits either axisymmetric or, importantly, non-axisymmetric travelling waves. The effect of wave formation on the interfacial area is investigated in connection with the use of electric fields to control thin film flows to enhance heat and mass transfer rates.


2011 ◽  
Vol 1292 ◽  
Author(s):  
A. Hinckley ◽  
R.K. Gupta ◽  
P.K. Kahol ◽  
K. Ghosh

ABSTRACTMultiferroics, the study of materials which possess ferromagnetic and ferroelectric ordering in a single phase, has become an area of prominent research. Moreover, this behavior has been extensively studied in materials which possess a perovskite crystal structure such as BiFeO3 and YMnO3. Due to their weak saturation magnetic moment, many rare-earth orthoferrites are currently of extreme interest. Utilizing a solid-state reaction between Y2O3 and Fe2O3 we have developed the rare-earth orthoferrite YFeO3 and conducted a bulk material study to determine this material’s availability for thin film multiferroic research. The absence of Y2O3 and Fe2O3 impurities was confirmed using Copper-Kα XRD. Examination of the dependence of the magnetization M on the temperature T was conducted to determine the reliability of multiferroic behavior across varying temperatures in conjunction with the investigation of the dependence of M on the electric field strength H. Results clearly display ferromagnetic behavior in our bulk material, providing ample evidence that our bulk material is an excellent candidate for thin film studies. Future studies on multiferroic YFeO3 thin films grown via pulsed laser deposition on Lanthanum Aluminate substrates will be conducted. Detailed data will be provided via XRD and SQUID to confirm magnetic properties while impurities are non-existent in our thin films.


2007 ◽  
Vol 1034 ◽  
Author(s):  
Shinji Fukao ◽  
Yoshikazu Nakanishi ◽  
Tadahiro Mizoguchi ◽  
Yoshiaki Ito ◽  
Toru Nakamura ◽  
...  

AbstractIt is well known that by changing the temperature for the polarized hemimorphy single crystal, such as LiNbO3 or BaTiO3, the electric field with high intensity is generated and then atmospheric gas atoms or molecules around the crystal are ionized. Using these phenomena, X-rays could be radiated by the bremsstrahlung radiation of electrons in low pressure [1,2]. However, this method has some disadvantages. For example, it is difficult to maintain the intensity of X-rays for a long term. The gas pressure range, where the intensity of X-rays is high, is narrow. The purpose of this study is to increase the intensity of X-rays in a high vacuum. In a low vacuum, positive charges generated by the ionization of gas molecules near the crystal weaken the electric field strength. Consequently, the intensity of X-rays also becomes weak. On the other hand, in a high vacuum, the number of electrons decreases. Thus, thermally emitted electrons are supplied to the X-rays radiation system in high vacuum to increase and stabilize the intensity of X-rays.The -z plane of the congruent LiNbO3 single crystal polarized in the z-axis direction of a 5 mm thickness and a 10 mm diameter was opposed to the Cu target of a 10 μm thickness placed at a distance of 21 mm from the –z plane in the gas pressure of 10-2-10-4 Pa. The temperature of crystal was changed between from -5 to 75 °C using Peltiert device. The temperature history of the crystal consists of a repetition of a series of the increasing and decreasing processes with the same period. Filament of thorium-added-tungsten as a thermal electrons source was placed at a distance of approximately 20 mm from the crystal side edge. DC current flowing in the filament was adjusted from 0 to 4 A.In the increasing process of the temperature, the characteristic X-ray of Nb was radiated. This result indicates that the sign of net charge on -z plane of the crystal is positive. Because thermally emitted electrons are supplied to the positively charged –z plane, the electric field strength generated by the crystal is very low. Thus, the intensity of characteristic X-ray of Nb is low. On the other hand, in the decreasing process of the temperature, the characteristic X-ray of Cu was radiated. At the pressure of approximately 10-2 Pa and the filament current of 2.5 A, the intensity of X-rays showed the local maximum. If electrons are supplied more, synthetic electric field strength is weakened by the electric field made by the electron. The intensity of X-rays using thermal electron source was ten or more times higher at the maximum than that without the source and was almost comparable as the case of a low vacuum or more than it. Using thermal electron source, the intensity of X-rays increased with decreasing the pressure down to approximately 10-2 Pa and became constant at lower pressure.


2016 ◽  
Vol 136 (10) ◽  
pp. 1420-1421
Author(s):  
Yusuke Tanaka ◽  
Yuji Nagaoka ◽  
Hyeon-Gu Jeon ◽  
Masaharu Fujii ◽  
Haruo Ihori

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


Author(s):  
Dhaval Solanki ◽  
Zeynab Rezaee ◽  
Anirban Dutta ◽  
Uttama Lahiri

Abstract Background Investigation of lobule-specific electric field effects of cerebellar transcranial direct current stimulation (ctDCS) on overground gait performance has not been performed, so this study aimed to investigate the feasibility of two lobule-specific bilateral ctDCS montages to facilitate overground walking in chronic stroke. Methods Ten chronic post-stroke male subjects participated in this repeated-measure single-blind crossover study, where we evaluated the single-session effects of two bilateral ctDCS montages that applied 2 mA via 3.14 cm2 disc electrodes for 15 min targeting (a) dentate nuclei (also, anterior and posterior lobes), and (b) lower-limb representations (lobules VIIb-IX). A two-sided Wilcoxon rank-sum test was performed at a 5% significance level on the percent normalized change measures in the overground gait performance. Partial least squares regression (PLSR) analysis was performed on the quantitative gait parameters as response variables to the mean lobular electric field strength as the predictors. Clinical assessments were performed with the Ten-Meter walk test (TMWT), Timed Up & Go (TUG), and the Berg Balance Scale based on minimal clinically important differences (MCID). Results The ctDCS montage specific effect was found significant using a two-sided Wilcoxon rank-sum test at a 5% significance level for 'Step Time Affected Leg' (p = 0.0257) and '%Stance Time Unaffected Leg' (p = 0.0376). The changes in the quantitative gait parameters were found to be correlated to the mean electric field strength in the lobules based on PLSR analysis (R2 statistic = 0.6574). Here, the mean electric field strength at the cerebellar lobules, Vermis VIIIb, Ipsi-lesional IX, Vermis IX, Ipsi-lesional X, had the most loading and were positively related to the 'Step Time Affected Leg' and '%Stance Time Unaffected Leg,' and negatively related to the '%Swing Time Unaffected Leg,' '%Single Support Time Affected Leg.' Clinical assessments found similar improvement in the TMWT (MCID: 0.10 m/s), TUG (MCID: 8 s), and BBS score (MCID: 12.5 points) for both the ctDCS montages. Conclusion Our feasibility study found an association between the lobular mean electric field strength and the changes in the quantitative gait parameters following a single ctDCS session in chronic stroke. Both the ctDCS montages improved the clinical outcome measures that should be investigated with a larger sample size for clinical validation. Trial registration: Being retrospectively registered.


Sign in / Sign up

Export Citation Format

Share Document