scholarly journals On Magnetic Inhibition of Thermal Convection

1972 ◽  
Vol 25 (6) ◽  
pp. 703 ◽  
Author(s):  
R Van der Borght ◽  
JO Murphy ◽  
EA Spiegel

The effect of an imposed vertical magnetic field on convective transfer in a horizontal Boussinesq layer of fluid heated from below is studied in the mean field approximation. Solutions are found over a wide range of conditions, for free boundaries, by a combination of numerical and analytic techniques. Quantitative estimates are made of the significant modifications to the heat transfer which are brought about by the presence of the magnetic field. It is found that the general properties of nonlinear steady cellular convection seem to persist in the face of magnetic inhibition.

1973 ◽  
Vol 26 (5) ◽  
pp. 617 ◽  
Author(s):  
R Van der Borght ◽  
JO Murphy

The combined effect of an imposed rotation and magnetic field on convective transfer in a horizontal Boussinesq layer of fluid heated from below is studied in the mean field approximation. The basic equations are derived by a variational technique and their solutions are then found over a wide range of conditions, in the case of free boundaries, by numerical and analytic techniques, in particular by asymptotic and perturbation methods. The results obtained by the different techniques are shown to be in excellent agreement. As for the linear theory, the calculations predict that the simultaneous presence' of a magnetic field and rotation may produce conflicting tendencies.


2001 ◽  
Vol 33 (2) ◽  
pp. 391-403 ◽  
Author(s):  
Didier Piau

Sun and Waterman model DNA mutations during the PCR reaction by a non-canonical branching process. Mean-field approximated values fit the simulated values surprisingly well. We prove this as a theoretical result, for a wide range of the parameters. Thus, we bound explicitly the biases, in law and in the mean, that the mean-field approximation induces in the random number of mutations of a DNA molecule, as a function of the initial number of molecules, of the number of PCR cycles, of the efficiency rate and of the mutation rate. The range where we prove that the approximation is good contains the observed mutation rates in many actual PCR reactions.


Author(s):  
Ryo Hayasaka ◽  
Masayuki Aoshima ◽  
Toshinori Suzuki ◽  
Akira Satoh

We have investigated mainly the influences of magnetic particle-particle interactions on orientational distributions and viscosity of a semi-dense dispersion, which is composed of rod-like particles with a magnetic moment magnetized normal to the particle axis. In addition, the influences of the magnetic field strength, shear rate, and random forces on the orientational distribution and rheological properties have been clarified. The mean field approximation has been applied to take into account magnetic interactions between rod-like particles. The basic equation of the orientational distribution function has been derived from the balance of torques and solved by the numerical analysis method. The results obtained here are summarized as follows. For a strong magnetic field, the rotational motion of the rod-like particle is restricted in a plane normal to the shearing plane because the magnetic moment of the particle is restricted in the magnetic field direction. Under circumstances of a very strong magnetic interaction between particles, the magnetic moment is strongly restricted in the magnetic field direction, so that the particle has a tendency to incline in the flow direction with the magnetic moment pointing to the magnetic field direction. For a strong shear flow, a directional characteristic of rod-like particles is enhanced, and this leads to a more significant one-peak-type distribution of the orientational distribution function. Magnetic interactions between particles do not contribute to the viscosity because the mean-field vector has only a component along the magnetic field direction.


2007 ◽  
Vol 22 (07n10) ◽  
pp. 623-629 ◽  
Author(s):  
WEI CHEN ◽  
PU-QING ZHANG ◽  
LIANG-GANG LIU

In the mean field approximation of the relativistic σ-ω-ρ model, the magnetic fields are incorporated, and it's influence on the properties of n-p-e neutron star matter are studied. When the strength of the magnetic field is weaker than ~1018G, the particles' fractions and chemical potentials, matter's energy density and pressure hardly change with the magnetic field; when the strength of the magnetic field is stronger than ~1020G, the above quantities change with the magnetic field evidently. Furthermore, the pressure is studied in both thermodynamics and hydrodynamics. The difference between these two ways exits in the high density region, that is, the thermal self-consistency may not be satisfied in this region if the magnetic field is considered.


1993 ◽  
Vol 07 (02) ◽  
pp. 109-116 ◽  
Author(s):  
Z. F. EZAWA ◽  
A. IWAZAKI

Anyon superconductivity is studied theoretically in a double-layer system containing identical anyons. In the mean-field approximation it is shown that the system possesses the superconducting phase due to the condensation of pairs of anyons belonging to different layers. There is no violation of P and T symmetry in this phase. The ground-state wavefunction derived exhibits these features. The gap energy is also calculated explicitly as ε F for semions, ε F being the fermi energy. The magnetic field is found to be squeezed into a vortex carrying one half of the Dirac unit of the magnetic flux.


2011 ◽  
Vol 09 (04) ◽  
pp. 1047-1056 ◽  
Author(s):  
D. O. SOARES-PINTO ◽  
J. TELES ◽  
A. M. SOUZA ◽  
E. R. DEAZEVEDO ◽  
R. S. SARTHOUR ◽  
...  

In this paper, we use Nuclear Magnetic Resonance (NMR) to write electronic states of a ferromagnetic system into high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radio frequency pulses, we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spin rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B = B0 + λM and (ii) B = B0 + λM + λ′M3, where B0 is the external magnetic field, and λ, λ′ are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions.


1993 ◽  
Vol 08 (20) ◽  
pp. 1909-1915 ◽  
Author(s):  
DIDIER CAENEPEEL ◽  
RICHARD MACKENZIE

We examine an approach to justifying the mean field approximation for the anyon gas, using the scattering of anyons. Parity violation permits a nonzero average scattering angle, from which one can extract a mean radius of curvature for anyons. If this is larger than the interparticle separation, one expects that the graininess of the statistical magnetic field is unimportant, and that the mean field approximation is good. We argue that a non-conventional interaction between anyons is crucial, in which case the criterion for validity of the approximation is identical to the one deduced using a self-consistency argument.


2011 ◽  
Vol 25 (07) ◽  
pp. 453-464 ◽  
Author(s):  
G. IANNONE ◽  
ORLANDO LUONGO

Recently, the study of complex networks led to the analysis of the so-called scale-free models in statistical mechanics. This study has increased its importance, thanks to the wide range of applications in numerous physical contexts; for example, one important question is to understand the behavior of various models on such networks. We start first by investigating the Ising model in the mean field approximation and on scale-free networks, studying especially the Ising model with annealed dilution and Clock model, with particular attention devoted to focusing on similarities between the mean field approximations with or without scale-free statistics. A particular emphasis is given to the possible practical applications of these results in other disciplines such as medicine and social science.


Sign in / Sign up

Export Citation Format

Share Document