scholarly journals The Measurement of Statistical Properties of Radio Noise Using Pulse Techniques

1973 ◽  
Vol 26 (4) ◽  
pp. 551
Author(s):  
RW Clay ◽  
DM McDonald ◽  
JR Prescott

The statistical properties of radio noise have been investigated by means of a wide-band radio receiving system and techniques similar to those employed in nuclear physics. Measurement of the amplitude probability distribution of broad-band noise at a rural location has shown that it can be represented by a Rayleigh distribution over a much wider dynamic range than is commonly observed. The time distribution of the largest observed noise amplitudes appears to be non-random.

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Muhammad Ali ◽  
Alamgir Khalil ◽  
Wali Khan Mashwani ◽  
Sharifah Alrajhi ◽  
Sanaa Al-Marzouki ◽  
...  

In this article, a new lifetime model, referred to as modified Frechet–Rayleigh distribution (MFRD), is developed by accommodating an additional parameter in Rayleigh distribution on the basis of the modified Frechet method. Numerous statistical properties of the suggested model are derived and discussed. The technique of maximum likelihood (ML) estimation is adopted to get estimates of the parameters. The suggested model is very flexible and has the capability to model datasets having both monotonic and nonmonotonic failure rates. The proposed model is applied on two real datasets for checking its performance in comparison with available well-known models. The suggested model has shown outclass performance in comparison with the available versions of the Rayleigh distribution used in the literature.


1992 ◽  
Vol 68 (5) ◽  
pp. 1589-1602 ◽  
Author(s):  
B. J. May ◽  
M. B. Sachs

1. Response thresholds and dynamic range properties of neurons in the ventral cochlear nucleus (VCN) of awake cats were measured by fitting a computational model to rate-level functions for best frequency (BF) tone bursts and for bursts of broad-band noise. Dynamic range measurements were performed in quiet and in the presence of continuous background noise. 2. The sample of neurons obtained in the VCN of awake cats exhibited a variety of peristimulus histograms (PSTHs) and thresholds. All PSTH response types previously described in the VCN of anesthetized cats were found in awake cats. The lowest thresholds for neural responses were observed at sound pressure levels that were equivalent to behavioral thresholds of absolute auditory sensitivity. 3. When responses to BF tones or bursts of broad-band noise were recorded in quiet backgrounds, the dynamic range properties of most units in the VCN of awake cats were not significantly different from dynamic range properties of auditory nerve fibers (ANFs) in anesthetized cats or VCN units in decerebrate cats. All auditory units showed a larger dynamic range for noise bursts than for tone bursts, but VCN units with primary-like and onset PSTHs showed larger dynamic ranges for responses to noise bursts than that of ANFs and VCN chopper units. 4. When tests were performed in the presence of continuous noise, rate-level functions for BF tone bursts shifted to higher tone levels and showed a more compressed range of driven rates in comparison with data obtained in quiet. Compression of the rate-level function in noise resulted from an increase in driven rate at low tone levels and a decrease in rate at high tone levels. These changes in the rate-level function suggest that noise may reduce the range of BF tone levels that are potentially encoded by a unit's rate responses. By exhibiting larger shifts and less compression in background noise, VCN units in awake cats better preserved the dynamic range of their rate responses to BF tones than ANFs in anesthetized cats or VCN units in decerebrate cats. 5. Rate-level functions were obtained from a small sample of VCN units not only with the cat performing the behavioral task but also with the cat awake and sitting quietly in the testing apparatus. No differences in noise-induced shift or compression were noted between the two testing conditions.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Dominic I Ashton ◽  
Matthew J Middleton

Abstract X-ray quasi-periodic oscillations (QPOs) in AGN allow us to probe and understand the nature of accretion in highly curved space-time, yet the most robust form of detection (i.e. repeat detections over multiple observations) has been limited to a single source to-date, with only tentative claims of single observation detections in several others. The association of those established AGN QPOs with a specific spectral component has motivated us to search the XMM-Newton archive and analyse the energy-resolved lightcurves of 38 bright AGN. We apply a conservative false alarm testing routine folding in the uncertainty and covariance of the underlying broad-band noise. We also explore the impact of red-noise leak and the assumption of various different forms (power-law, broken power-law and lorentzians) for the underlying broad-band noise. In this initial study, we report QPO candidates in 6 AGN (7 including one tentative detection in MRK 766) from our sample of 38, which tend to be found at characteristic energies and, in four cases, at the same frequency across at least two observations, indicating they are highly unlikely to be spurious in nature.


1995 ◽  
Vol 81 (3) ◽  
pp. 803-816 ◽  
Author(s):  
Ulf Landström ◽  
Anders Kjellberg ◽  
Marianne Byström

Three groups of 24 subjects were exposed to a 1000–Hz tone or broad band noise in a sound chamber. During the exposures subjects were engaged in an easy reaction time test or a difficult grammatical reasoning test. For each exposure and work subjects adjusted the noise to a tolerance level defined by its interference with task performance. During the simple reaction-time task significantly higher sound-pressure levels were accepted than during the reasoning test. At the tonal exposure, much lower levels were accepted than during the exposure to broad-band noise. For continuous sound exposures much higher levels were accepted than for noncontinuous exposures. For tonal exposures the difference was approximately 5 dB, for the broad-band exposures approximately 9 dB. In a separate study the effects of the noncontinuity of the noise and pauses were analysed. The raised annoying effect of the noncontinuous noise was not more affected by the noncontinuity of the noise periods than by the noncontinuity of the pauses. The results imply that the annoying reactions to the sound will be increased for repetitive noise and that the reaction is highly influenced by the over-all noncontinuity of the exposure.


2001 ◽  
Vol 694 ◽  
Author(s):  
Fredy R Zypman ◽  
Gabriel Cwilich

AbstractWe obtain the statistics of the intensity, transmission and conductance for scalar electromagnetic waves propagating through a disordered collection of scatterers. Our results show that the probability distribution for these quantities x, follow a universal form, YU(x) = xne−xμ. This family of functions includes the Rayleigh distribution (when α=0, μ=1) and the Dirac delta function (α →+ ∞), which are the expressions for intensity and transmission in the diffusive regime neglecting correlations. Finally, we find simple analytical expressions for the nth moment of the distributions and for to the ratio of the moments of the intensity and transmission, which generalizes the n! result valid in the previous case.


1974 ◽  
Vol 64 (1) ◽  
pp. 103-113 ◽  
Author(s):  
E. R. Kanasewich ◽  
W. P. Siewert ◽  
M. D. Burke ◽  
C. H. McCloughan ◽  
L. Ramsdell

abstract A wide-band, gain-ranging amplifier is described that may be used for recording data with a dynamic range of 60 db in each of three different levels, 12 db apart, so that we achieve an “effective” dynamic ±160-v analog or 84-db digital, within a normal ±10-v analog system. As described, the ranging circuit reduces the gain of the amplifier by a factor of either 4 or 16 whenever the output signal approaches the maximum for the system. The wide-band response is achieved with low-noise operational amplifiers and second-order active filters. Signals with periods greater than 30 sec are amplified by 100 db and those with periods shorter than 1 sec are amplified by 70 db. The system works well in extending the useful output range of a Willmore Mark II seismometer with a natural period of 1.5 sec to over 40 sec under normal field operating conditions. When analog recording, the gain-range switching occurs when the input signal reaches ±8.1-v; when digital recording, the level is ±9.375 v. The period in a divide-by-4- or 16-state is preset by the experimentalist. The gain level is recorded on an extra channel which is also used to record absolute time.


Sign in / Sign up

Export Citation Format

Share Document