Dynamic range of neural rate responses in the ventral cochlear nucleus of awake cats

1992 ◽  
Vol 68 (5) ◽  
pp. 1589-1602 ◽  
Author(s):  
B. J. May ◽  
M. B. Sachs

1. Response thresholds and dynamic range properties of neurons in the ventral cochlear nucleus (VCN) of awake cats were measured by fitting a computational model to rate-level functions for best frequency (BF) tone bursts and for bursts of broad-band noise. Dynamic range measurements were performed in quiet and in the presence of continuous background noise. 2. The sample of neurons obtained in the VCN of awake cats exhibited a variety of peristimulus histograms (PSTHs) and thresholds. All PSTH response types previously described in the VCN of anesthetized cats were found in awake cats. The lowest thresholds for neural responses were observed at sound pressure levels that were equivalent to behavioral thresholds of absolute auditory sensitivity. 3. When responses to BF tones or bursts of broad-band noise were recorded in quiet backgrounds, the dynamic range properties of most units in the VCN of awake cats were not significantly different from dynamic range properties of auditory nerve fibers (ANFs) in anesthetized cats or VCN units in decerebrate cats. All auditory units showed a larger dynamic range for noise bursts than for tone bursts, but VCN units with primary-like and onset PSTHs showed larger dynamic ranges for responses to noise bursts than that of ANFs and VCN chopper units. 4. When tests were performed in the presence of continuous noise, rate-level functions for BF tone bursts shifted to higher tone levels and showed a more compressed range of driven rates in comparison with data obtained in quiet. Compression of the rate-level function in noise resulted from an increase in driven rate at low tone levels and a decrease in rate at high tone levels. These changes in the rate-level function suggest that noise may reduce the range of BF tone levels that are potentially encoded by a unit's rate responses. By exhibiting larger shifts and less compression in background noise, VCN units in awake cats better preserved the dynamic range of their rate responses to BF tones than ANFs in anesthetized cats or VCN units in decerebrate cats. 5. Rate-level functions were obtained from a small sample of VCN units not only with the cat performing the behavioral task but also with the cat awake and sitting quietly in the testing apparatus. No differences in noise-induced shift or compression were noted between the two testing conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

1995 ◽  
Vol 73 (1) ◽  
pp. 141-159 ◽  
Author(s):  
I. M. Winter ◽  
A. R. Palmer

1. The responses of onset units in the cochlear nucleus of the anesthetized guinea pig have been measured to single tones, two-tone complexes, and broadband noise (BBN; 20-kHz bandwidth). The onset units were subdivided into three groups, onset-I (OnI), onset-L (OnL), and onset-C (OnC), on the basis of a decision tree using their peristimulus time histogram (PSTH) shape and discharge rate in response to suprathreshold best-frequency (BF) tone bursts. 2. PSTHs were constructed from responses either to single tones at a unit's BF or to BBN as a function of level. When sufficient sustained activity could be elicited from the unit, arbitrarily defined as > 100 spikes/s, a coefficient of variation (CV) was calculated; the majority were characterized by a CV that was similar to transient chopper units (0.35 < CV < 0.5). First spike latency decreased monotonically with increasing sound level. For the majority of onset units, the first spike timing was very precise. 3. BF rate-level functions recorded from OnL and OnC units did not show any signs of discharge rate saturation at the highest sound levels we have used (100-115 dB SPL). No systematic relationship was observed between the threshold at BF and the shape of the rate-level function. BBN rate-level functions were typically characterized by higher discharge rates than in response to BF tones. However, for OnI units and a minority of other onset units, there was little difference in the shape of their rate-level functions in response to BF tones or BBN. 4. The threshold of most onset units to BBN was similar to the threshold to a BF tone that had similar overall root-mean-square (RMS) energy. The BBN threshold was, on average, 5.5 dB greater than the BF threshold. This result contrasts with that found in auditory-nerve fibers recorded in the same species, with the use of an identical sound system, where the threshold to BBN was, on average, 19.4 dB higher. The mean threshold difference between BBN and BF tones for a population of chopper units recorded in the same series of experiments was 17.7 dB. The relative thresholds to BBN and BF tones indicated that the bandwidths near the onset units' BF threshold were broader than could be estimated with the use of single tones. Ten units were characterized by bimodal response areas.(ABSTRACT TRUNCATED AT 400 WORDS)


1973 ◽  
Vol 26 (4) ◽  
pp. 551
Author(s):  
RW Clay ◽  
DM McDonald ◽  
JR Prescott

The statistical properties of radio noise have been investigated by means of a wide-band radio receiving system and techniques similar to those employed in nuclear physics. Measurement of the amplitude probability distribution of broad-band noise at a rural location has shown that it can be represented by a Rayleigh distribution over a much wider dynamic range than is commonly observed. The time distribution of the largest observed noise amplitudes appears to be non-random.


1976 ◽  
Vol 39 (2) ◽  
pp. 282-300 ◽  
Author(s):  
E. D. Young ◽  
W. E. Brownell

1. Single-unit responses in the dorsal cochlear nucleus of unanesthetized, decerebrate cats have been divided into two categoreis. These have been differentiated on the basis of responses to best-frequency tones. Type IV units responded to best-frequency tones with excitation from threshold to about 20 or 30 dB above threshold; at higher levels, their response was inhibitory. In a few cases, the excitatory area near threshold was not seen and in a few others, the response became excitatory again at high levels. Type IV units could be divided into two groups based on the length of time that inhibition was maintained in response to long tones. Type IV units are not seen in anesthetized cats. 2. Type II/III units responded to best-frequency tones of all levels with excitation. Nonmonotonic rate versus level functions were seen in type II/III units, but they were of much less drastic character; the discharge rate of nonmonotonic type II/III units was still well above spontaneous rate for tones 50 dB above threshold. Type II/III units defined in this way were found to have, on the average, lower rates of spontaneous activity and higher thresholds than type IV units. 3. Type II/III units responded weakly to broad-band noise in comparison to auditory nerve fibers and many of them did not respond at all to noise. Type IV units, with best frequencies above 0.9 kHz, gave excitatory responses to noise. 4. The inhibitory response areas of type IV units could be divided into two areas: a central inhibitory area in the vicinity of best frequency where on- and off-discharges and afterdischarges were seen; and inhibitory side bands at higher and lower frequencies where simple inhibitory responses were seen. In four units, it was possible to show that the central inhibitory area was converted to an excitatory area after administration of an anesthetic dose of pentobarbital. 5. Most type II/III and type IV units could be excited or inhibited by stimuli in the contralateral ear. Broad-band noise was a more effective contralateral stimulus than tones at the ipsilateral best frequency. 6. On the basis of the properties of type II/III and type IV cells, it is suggested that type II/III responses are recorded from interneurons which provide a large share of the inhibitory imput to type IV cells.


1994 ◽  
Vol 71 (2) ◽  
pp. 493-514 ◽  
Author(s):  
W. S. Rhode ◽  
S. Greenberg

1. The ability of cells in the cochlear nucleus (CN) to encode frequency information in the presence of background noise on the basis of "place/rate" information was investigated by measuring the threshold, magnitude, and extent of lateral suppression in the ventral and dorsal CN of the anesthesized cat. The suppression regions were delineated through the use of "masked" response areas (MRAs). The MRA is a family of isointensity curves derived from the average discharge rate in response to a tone of variable frequency and sound pressure level in the presence of a concurrently presented broadband, quasi-flat-spectrum noise. Tonal stimuli of sufficient intensity are often effective in significantly reducing the average discharge rate of CN neurons over a wide frequency range. 2. Most units in the CN exhibit prominent lateral suppressive sidebands, but the variability in threshold, magnitude, and extent of suppression is large. Primary-like and onset units of the ventral CN manifest the least suppression and have the highest suppression thresholds. Pauser/buildup units in the dorsal division and choppers distributed throughout the CN show the largest amount of suppression and have the lowest suppression thresholds. 3. Auditory nerve fibers manifest some degree of lateral suppression, particularly fibers of low and medium spontaneous rate. However, in few instances are the threshold, magnitude, and extent comparable with that observed among the majority of chopper and pauser/buildup units. For this reason the lateral suppression observed among the latter unit types is unlikely to originate entirely from cochlear processes, but rather is likely to reflect largely neural mechanisms intrinsic to the CN. In contrast, the MRAs of most primary-like and onset units suggest that the suppression behavior of most of these cells originates mostly, if not entirely, in the cochlea and auditory nerve. 4. A primary consequence of lateral suppression is to preserve the sharp frequency selectivity of CN neurons at moderate to high sound pressure levels, particularly in background noise. In this fashion lateral suppressive mechanisms potentially enhance the representation of spectral information on the basis of place/rate information relative to that in the auditory nerve under noisy background conditions. 5. Lateral suppressive mechanisms probably underlie the dynamic range shift seen in the presence of a simultaneously presented noise. This mechanism may be crucial for preserving the ability to perceive signals in a noisy background.


1998 ◽  
Vol 79 (4) ◽  
pp. 1755-1767 ◽  
Author(s):  
Bradford J. May ◽  
Glenn S. Le Prell ◽  
Murray B. Sachs

May, Bradford J., Glenn S. Le Prell, and Murray B. Sachs. Vowel representations in the ventral cochlear nucleus of the cat: effects of level, background noise, and behavioral state. J. Neurophysiol. 79: 1755–1767, 1998. Single-unit responses were studied in the ventral cochlear nucleus (VCN) of cats as formant and trough features of the vowel /ε/ were shifted in the frequency domain to each unit's best frequency (BF; the frequency of greatest sensitivity). Discharge rates sampled with this spectrum manipulation procedure (SMP) were used to estimate vowel representations provided by populations of VCN neurons. In traditional population measures, a good representation of a vowel's formant structure is based on relatively high discharge rates among units with BFs near high-energy formant features and low rates for units with BFs near low-energy spectral troughs. At most vowel levels and in the presence of background noise, chopper units exhibited formant-to-trough rate differences that were larger than VCN primary-like units and auditory-nerve fibers. By contrast, vowel encoding by primary-like units resembled auditory nerve representations for most stimulus conditions. As is seen in the auditory nerve, primary-like units with low spontaneous rates (SR <18 spikes/s) produced better representations than high SR primary-like units at all but the lowest vowel levels. Awake cats exhibited the same general response properties as anesthetized cats but larger between-subject differences in vowel driven rates. The vowel encoding properties of VCN chopper units support previous interpretations that patterns of auditory nerve convergence on cochlear nucleus neurons compensate for limitations in the dynamic range of peripheral neurons.


2001 ◽  
Vol 85 (3) ◽  
pp. 1206-1219 ◽  
Author(s):  
Lutz Wiegrebe ◽  
Ian M. Winter

The discharge patterns of single units in the ventral cochlear nucleus (VCN) of anesthetized guinea pigs were examined in response to iterated rippled noise (IRN) as a function of the IRN delay (which determines the IRN pitch) and the IRN sound level. Delays were varied over five octaves in half-octave steps, and sound levels were varied over a 30- or 50-dB range in steps of 5 dB. Neural responses were analyzed in terms of first-order and all-order inter-spike intervals (ISIs). The IRN quasi-periodicity was preserved in the all-order ISIs for most units independent of unit type or best frequency (BF). A deterioration of the temporal all-order code was found, however, when the neural response was influenced by inhibition. The IRN quasi-periodicity was also preserved in first-order ISIs for a limited range of IRN delays and levels. Sustained Chopper units (CS) in the VCN responded with very regular ISIs when the IRN delay corresponded to the unit's chopping period; i.e., the unit showed an increased proportion of intervals corresponding to the IRN delay (interval enhancement) relative to an equal-level, white-noise stimulation. This interval enhancement has a band-pass characteristic with a peak corresponding to the chopping period. Moreover, for CS units in rate saturation, the chopping period, and thus the interval enhancement to the IRN, did not vary with level. Units classified as onset-chopper also show a band-pass interval enhancement to the IRN stimuli; however, they show more level-dependent changes than CS units. Primary-like (PL) units also show level-dependent changes in their ability to code the IRN pitch in first-order intervals. The range of delays where PL units showed interval enhancement was broader and extended to shorter delays. Based on these findings, it is suggested that CS units may play an important role in pitch processing in that they transform a higher-order interval code into a first-order interval place code. Their limited dynamic range together with the preservation of the temporal stimulus features in saturation may serve as a physiological basis for the perceived level independence of pitch.


1988 ◽  
Vol 60 (1) ◽  
pp. 1-29 ◽  
Author(s):  
E. D. Young ◽  
J. M. Robert ◽  
W. P. Shofner

1. The responses of neurons in the ventral cochlear nucleus (VCN) of decerebrate cats are described with regard to their regularity of discharge and latency. Regularity is measured by estimating the mean and standard deviation of interspike intervals as a function of time during responses to short tone bursts (25 ms). This method extends the usual interspike-interval analysis based on interval histograms by allowing the study of temporal changes in regularity during transient responses. The coefficient of variation (CV), equal to the ratio of standard deviation to mean interspike interval, is used as a measure of irregularity. Latency is measured as the mean and standard deviation of the latency of the first spike in response to short tone bursts, with 1.6-ms rise times. 2. The regularity and latency properties of the usual PST histogram response types are shown. Five major PST response type classes are used: chopper, primary-like, onset, onset-C, and unusual. The presence of a prepotential in a unit's action potentials is also noted; a prepotential implies that the unit is recorded from a bushy cell. 3. Units with chopper PST histograms give the most regular discharge. Three varieties of choppers are found. Chop-S units (regular choppers) have CVs less than 0.35 that are approximately constant during the response; chop-S units show no adaptation of instantaneous rate, as measured by the inverse of the mean interspike interval. Chop-T units have CVs greater than 0.35, show an increase in irregularity during the response and show substantial rate adaptation. Chop-U units have CVs greater than 0.35, show a decrease in irregularity during the response, and show a variety of rate adaptation behaviors, including negative adaptation (an increase in rate during a short-tone response). Irregular choppers (chop-T and chop-U units) rarely have CVs greater than 0.5. Choppers have the longest latencies of VCN units; all three groups have mean latencies at least 1 ms longer than the shortest auditory nerve (AN) fiber mean latencies. 4. Chopper units are recorded from stellate cells in VCN (35, 42). Our results for chopper units suggest a model for stellate cells in which a regularly firing action potential generator is driven by the summation of the AN inputs to the cell, where the summation is low-pass filtered by the membrane capacitance of the cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2117
Author(s):  
Hui Han ◽  
Zhiyuan Ren ◽  
Lin Li ◽  
Zhigang Zhu

Automatic modulation classification (AMC) is playing an increasingly important role in spectrum monitoring and cognitive radio. As communication and electronic technologies develop, the electromagnetic environment becomes increasingly complex. The high background noise level and large dynamic input have become the key problems for AMC. This paper proposes a feature fusion scheme based on deep learning, which attempts to fuse features from different domains of the input signal to obtain a more stable and efficient representation of the signal modulation types. We consider the complementarity among features that can be used to suppress the influence of the background noise interference and large dynamic range of the received (intercepted) signals. Specifically, the time-series signals are transformed into the frequency domain by Fast Fourier transform (FFT) and Welch power spectrum analysis, followed by the convolutional neural network (CNN) and stacked auto-encoder (SAE), respectively, for detailed and stable frequency-domain feature representations. Considering the complementary information in the time domain, the instantaneous amplitude (phase) statistics and higher-order cumulants (HOC) are extracted as the statistical features for fusion. Based on the fused features, a probabilistic neural network (PNN) is designed for automatic modulation classification. The simulation results demonstrate the superior performance of the proposed method. It is worth noting that the classification accuracy can reach 99.8% in the case when signal-to-noise ratio (SNR) is 0 dB.


Sign in / Sign up

Export Citation Format

Share Document