Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

2015 ◽  
Vol 22 (5) ◽  
pp. 052306 ◽  
Author(s):  
Shimin Guo ◽  
Liquan Mei ◽  
Zhengqiang Zhang
1997 ◽  
Vol 50 (2) ◽  
pp. 319 ◽  
Author(s):  
K. K. Mondal ◽  
S. N. Paul ◽  
A. Roychowdhury

The dispersion relation of an ion-acoustic wave propagating through a collisionless, unmagnetised plasma, having warm isothermal electrons and cold positive and negative ions has been derived. It is seen that the ion-acoustic wave will be unstable in the presence of streaming of ions. Instability of the wave is graphically analysed for the plasma having (H+, O¯) ions, (H+, O2¯) ions, (H+, SF5¯) ions, (He+, Cl¯) ions and (Ar+, O¯) ions with different negative ion concentration and relativistic velocity.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Biswajit Sahu ◽  
Barnali Pal ◽  
Swarup Poria ◽  
Rajkumar Roychoudhury

The nonlinear properties of the ion acoustic waves (IAWs) in a three-component quantum plasma comprising electrons, and positive and negative ions are investigated analytically and numerically by employing the quantum hydrodynamic (QHD) model. The Sagdeev pseudopotential technique is applied to obtain the small-amplitude soliton solution. The effects of the quantum parameter$H$, positive to negative ion density ratio${\it\beta}$and Mach number on the nonlinear structures are investigated. It is found that these factors can significantly modify the properties of the IAWs. The existence of quasi-periodic and chaotic oscillations in the system is established. Switching from quasi-periodic to chaotic is possible with the variation of Mach number or quantum parameter$H$.


2008 ◽  
Vol 74 (5) ◽  
pp. 639-656 ◽  
Author(s):  
MICHAEL S. RUDERMAN ◽  
TATYANA TALIPOVA ◽  
EFIM PELINOVSKY

AbstractIn this paper we study the propagation of nonlinear ion-acoustic waves in plasmas with negative ions. The Gardner equation governing these waves in plasmas with the negative ion concentration close to critical is derived. The weakly nonlinear theory of modulational instability based on the use of the nonlinear Schrödinger equation is discussed. The investigation of the nonlinear dynamics of modulationally unstable quasi-harmonic wavepackets is carried out by the numerical solution of the Gardner equation. The results are compared with the predictions of the weakly nonlinear theory.


1990 ◽  
Vol 43 (3) ◽  
pp. 319 ◽  
Author(s):  
GC Das ◽  
Kh lbohanbi Singh

By using the reductive perturbation technique, ion-acoustic waves are studied in a generalised multicomponent plasma. The multiple ions modify drastically the characteristics of the solitary waves. In particular, the negative ions have a critical density at which the nonlinearity of the Korteweg-deVries (K-dV) equation vanishes and the ion-acoustic solitary wave is seen to be described by a modified K-dV (mK-dV) equation. Using higher order nonlinearities, the non-uniform transition of the K-dV equation to the mK-dV equation along with the conservation of the Sagdeev potential is described. Theoretical observations on the existence of the solitary waves, as expected, could be of interest in laboratory plasmas


2000 ◽  
Vol 63 (4) ◽  
pp. 343-353 ◽  
Author(s):  
S. K. EL-LABANY ◽  
S. A. EL-WARRAKI ◽  
W. M. MOSLEM

Cylindrical ion-acoustic solitons are investigated in a warm plasma with negative ions and multiple-temperature electrons through the derivation of a cylindrical Korteweg–de Vries equation using a reductive perturbation theory. The results are compared with those for the corresponding planar solitons.


2012 ◽  
Vol 79 (2) ◽  
pp. 163-168 ◽  
Author(s):  
U. M. ABDELSALAM ◽  
M. M. SELIM

AbstractThe hydrodynamic equations of positive and negative ions, degenerate electrons, and the Poisson equation are used along with the reductive perturbation method to derive the three-dimensional Zakharov–Kuznetsov (ZK) equation. The G′/G-expansion method is used to obtain a new class of solutions for the ZK equation. At certain condition, these solutions can describe the solitary waves that propagate in our plasma. The effects of negative ion concentrations, the positive/negative ion cyclotron frequency, as well as positive-to-negative ion mass ratio on solitary pulses are examined. Finally, the present study might be helpful to understand the propagation of nonlinear ion-acoustic solitary waves in a dense plasma, such as in astrophysical objects.


1985 ◽  
Vol 28 (6) ◽  
pp. 2016 ◽  
Author(s):  
Santwana Raychaudhuri ◽  
Karl E. Lonngren

2013 ◽  
Vol 79 (5) ◽  
pp. 893-908 ◽  
Author(s):  
M. K. MISHRA ◽  
S. K. JAIN

AbstractIon-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg–de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (αc), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of αc decreases with increase in γ.


Sign in / Sign up

Export Citation Format

Share Document