Kinetics of Rubisco Activation as Determined from Gas-exchange Measurements in Antisense Plants of Arabidopsis thaliana Containing Reduced Levels of Rubisco Activase

1997 ◽  
Vol 24 (6) ◽  
pp. 811 ◽  
Author(s):  
Keith A. Mott ◽  
Gordon W. Snyder ◽  
Ian E. Woodrow

The kinetics of the increase in photosynthesis rate following an increase in PFD were determined in wildtype Arabidopsis thaliana plants and in two antisense plants that contained reduced levels of Rubisco activase. Experiments were conducted over a range of intercellular CO2 mole fractions (ci). The rate at which photosynthesis approached steady-state following an increase in PFD was similar for wildtype and transformed plants at low values of ci. At higher values of ci, however, wildtype plants approached steady state more rapidly than did the antisense plants. Photosynthesis time courses were used to calculate Rubisco activation rates for the three types of plants, and Rubisco activation rate was found to be proportional to activase content at a ci of 280 µmol mol-1. These data are discussed in the context of proposed mechanisms for Rubisco activase in the activation of Rubisco.

AoB Plants ◽  
2020 ◽  
Vol 12 (6) ◽  
Author(s):  
William T Salter ◽  
Si Li ◽  
Peter M Dracatos ◽  
Margaret M Barbour

Abstract Enhancing the photosynthetic induction response to fluctuating light has been suggested as a key target for improvement in crop breeding programmes, with the potential to substantially increase whole-canopy carbon assimilation and contribute to crop yield potential. Rubisco activation may be the main physiological process that will allow us to achieve such a goal. In this study, we assessed the phenotype of Rubisco activation rate in a doubled haploid (DH) barley mapping population [131 lines from a Yerong/Franklin (Y/F) cross] after a switch from moderate to saturating light. Rates of Rubisco activation were found to be highly variable across the mapping population, with a median activation rate of 0.1 min−1 in the slowest genotype and 0.74 min−1 in the fastest genotype. A unique quantitative trait locus (QTL) for Rubisco activation rate was identified on chromosome 7H. This is the first report on the identification of a QTL for Rubisco activation rate in planta and the discovery opens the door to marker-assisted breeding to improve whole-canopy photosynthesis of barley. This also suggests that genetic factors other than the previously characterized Rubisco activase (RCA) isoforms on chromosome 4H control Rubisco activity. Further strength is given to this finding as this QTL co-localized with QTLs identified for steady-state photosynthesis and stomatal conductance. Several other distinct QTLs were identified for these steady-state traits, with a common overlapping QTL on chromosome 2H, and distinct QTLs for photosynthesis and stomatal conductance identified on chromosomes 4H and 5H, respectively. Future work should aim to validate these QTLs under field conditions so that they can be used to aid plant breeding efforts.


1996 ◽  
Vol 23 (2) ◽  
pp. 141 ◽  
Author(s):  
IE Woodrow ◽  
ME Kelly ◽  
KA Mott

A mechanistically-based model of light-mediated activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is developed. The model describes the kinetics of Rubisco activation following a relatively rapid increase in photon flux density (PPFD) from an initially low level. Underlying the model is the assumption that there are two slow processes that could potentially limit the rate of light-mediated Rubisco activation. These processes are the addition of the activator CO2 to the large subunit of Rubisco, which is accompanied by a conformational change in the enzyme (carbamylation), and activase-mediated removal of ribulose 1,5-bisphosphate from the inactive form of the enzyme. The contribution of these slow processes to the overall activation kinetics of Rubisco was resolved by measuring Rubisco activation in whole spinach leaves using non-steady-state CO2 exchange. It was found that when the change in PPFD was relatively small and a correspondingly small proportion of the Rubisco pool was activated, the kinetics of activation were highly sensitive to the intercellular CO2 concentration (ci). The apparent rate constant for activation under these conditions was found to be similar to that for the carbamylation of purified spinach Rubisco. When the change in PPFD and the proportion of Rubisco activated was relatively large, however, the kinetics of Rubisco activation were almost completely CO2 insensitive and were consistent with those of an enzyme-catalysed reaction. It is suggested that (1) CO2-insensitive activation reflects the operation of Rubisco activase and (2) the increasing CO2 sensitivity seen as the change in PPFD decreases reflects a transition to limitation by carbamylation.


1996 ◽  
Vol 8 (4) ◽  
pp. 328-336 ◽  
Author(s):  
Ralph Beneke ◽  
Volker Schwarz ◽  
Renate Leithäuser ◽  
Matthias Hütler ◽  
Serge P. von Duvillard

Maximal lactate steady state (MLSS) corresponds to the prolonged constant workload whereby the kinetics of blood lactate concentration clearly increases from steady state. Different results of MLSS in children may reflect specific test protocols or definitions. Three methods corresponding to lactate time courses during 20 min (MLSS I), 16 min (MLSS II), and 8 min (MLSS III) of constant submaximal workload were intraindividually compared in 10 boys. At MLSS I, lactate, V̇O2peak, heart rate, and workload were higher (p < .05) than at MLSS II and at MLSS III. The differences between MLSS I, MLSS II, and MLSS III reflect insufficient contribution to lactate kinetics by testing procedures, strongly depending on the lactate time courses during the initial 10 min of constant workload. Previously published divergent results of MLSS in children seem to reflect a methodological effect more than a metabolic change.


2020 ◽  
Author(s):  
William T. Salter ◽  
Si Li ◽  
Peter M. Dracatos ◽  
Margaret M. Barbour

AbstractEnhancing the photosynthetic induction response to fluctuating light has been suggested as a key target for improvement in crop breeding programs, with the potential to substantially increase whole canopy carbon assimilation and contribute to crop yield potential. Rubisco activation may be the main physiological process that will allow us to achieve such a goal. In this study, we phenotypically assessed the rubisco activation rate in a doubled haploid (DH) barley mapping population [131 lines from a Yerong/Franklin (Y/F) cross] after a switch from moderate to saturating light. Rates of rubisco activation were found to be highly variable across the mapping population, with a median activation rate of 0.1 min−1 in the slowest genotype and 0.74 min−1 in the fastest genotype. A QTL for rubisco activation rate was identified on chromosome 7H. This is the first report on the identification of a QTL for rubisco activation rate in planta and the discovery opens the door to marker assisted breeding to improve whole canopy photosynthesis of barley. Further strength is given to this finding as this QTL colocalised with QTLs identified for steady state photosynthesis and stomatal conductance. Several other distinct QTLs were identified for these steady state traits, with a common overlapping QTL on chromosome 2H, and distinct QTLs for photosynthesis and stomatal conductance identified on chromosomes 4H and 5H respectively. Future work should aim to validate these QTLs under field conditions so that they can be used to aid plant breeding efforts.HighlightSignificant variation exists in the photosynthetic induction response after a switch from moderate to saturating light across a barley doubled haploid population. A QTL for rubisco activation rate was identified on chromosome 7H, as well as overlapping QTLs for steady state photosynthesis and stomatal conductance.


1992 ◽  
Vol 262 (5) ◽  
pp. F813-F822 ◽  
Author(s):  
S. Nielsen

The present study was undertaken to determine the time courses and kinetics of the subcellular processing of 125I-insulin in isolated and in vitro perfused proximal tubules. Morphometric analysis demonstrated well-preserved ultrastructure after 90 min of perfusion. After luminal perfusion for 90 min the absorption was constant with time and reached steady state within 5 min (177 +/- 7 fg.min-1.mm-1). Also the hydrolysis rate and tubular accumulation rate were constant and averaged 84 +/- 8 and 93 +/- 10 fg.min-1.mm-1, respectively. Free 125I appeared already within 5 min of perfusion and reached steady state within 10 min. From proximal tubules perfused with 125I-insulin for 30 min and chased for 60 min, a compartmental analysis revealed two compartments; half time (t1/2) for delivery of insulin to the lysosomes was determined to be 8.5 min, and t1/2 for lysosomal degradation was 72 min. The results demonstrated that internalization by endocytic invaginations, incorporation in endocytic vacuoles, fusion with lysosomes, and hydrolysis were rapid processes and reached maximum rates within few minutes. A significant transtubular transport of insulin to the peritubular compartment was determined to be a constant rate of 11.2 +/- 0.7 fg.min-1.mm-1. Perfusion of tubules with insulin at high concentrations in the perfusate revealed that the transport was dependent on the absorbed amount and not on the perfused load, compatible with transport through the cells and not via a paracellular mechanism. The intactness of the tight junctions was supported by the following: 1) [14C]inulin leak did not increase with time and 2) enzyme-free intercellular spaces were evident after perfusion for only 5 min with microperoxidase (mol wt of 1,700). The transported 125I-insulin was trichloroacetic acid precipitable and immunoprecipitable.


1985 ◽  
Vol 248 (5) ◽  
pp. C498-C509 ◽  
Author(s):  
D. Restrepo ◽  
G. A. Kimmich

Zero-trans kinetics of Na+-sugar cotransport were investigated. Sugar influx was measured at various sodium and sugar concentrations in K+-loaded cells treated with rotenone and valinomycin. Sugar influx follows Michaelis-Menten kinetics as a function of sugar concentration but not as a function of Na+ concentration. Nine models with 1:1 or 2:1 sodium:sugar stoichiometry were considered. The flux equations for these models were solved assuming steady-state distribution of carrier forms and that translocation across the membrane is rate limiting. Classical enzyme kinetic methods and a least-squares fit of flux equations to the experimental data were used to assess the fit of the different models. Four models can be discarded on this basis. Of the remaining models, we discard two on the basis of the trans sodium dependence and the coupling stoichiometry [G. A. Kimmich and J. Randles, Am. J. Physiol. 247 (Cell Physiol. 16): C74-C82, 1984]. The remaining models are terter ordered mechanisms with sodium debinding first at the trans side. If transfer across the membrane is rate limiting, the binding order can be determined to be sodium:sugar:sodium.


Sign in / Sign up

Export Citation Format

Share Document