Maximal Lactate Steady State in Children

1996 ◽  
Vol 8 (4) ◽  
pp. 328-336 ◽  
Author(s):  
Ralph Beneke ◽  
Volker Schwarz ◽  
Renate Leithäuser ◽  
Matthias Hütler ◽  
Serge P. von Duvillard

Maximal lactate steady state (MLSS) corresponds to the prolonged constant workload whereby the kinetics of blood lactate concentration clearly increases from steady state. Different results of MLSS in children may reflect specific test protocols or definitions. Three methods corresponding to lactate time courses during 20 min (MLSS I), 16 min (MLSS II), and 8 min (MLSS III) of constant submaximal workload were intraindividually compared in 10 boys. At MLSS I, lactate, V̇O2peak, heart rate, and workload were higher (p < .05) than at MLSS II and at MLSS III. The differences between MLSS I, MLSS II, and MLSS III reflect insufficient contribution to lactate kinetics by testing procedures, strongly depending on the lactate time courses during the initial 10 min of constant workload. Previously published divergent results of MLSS in children seem to reflect a methodological effect more than a metabolic change.

Author(s):  
O.A.B. Soares ◽  
G.C. Ferraz ◽  
C.B. Martins ◽  
D.P.M. Dias ◽  
J.C. Lacerda-Neto ◽  
...  

The anaerobic threshold is a physiologic event studied in various species. There are various methods for its assessment, recognized in the human and equine exercise physiology literature, several of these involving the relationship between blood lactate concentration (LAC) and exercise load, measured in a standardized exercise test. The aim of this study was to compare four of these methods: V2, V4, individual anaerobic threshold (IAT) and lactate minimum speed (LMS) with the method recognized as the gold standard for the assessment of anaerobic threshold, maximal lactate steady-state (MLSS). The five tests were carried out in thirteen trained Arabian horses, in which velocities and associated LAC could be measured. The mean velocities and the LAC associated with the anaerobic threshold for the five methods were respectively: V2 = 9.67±0.54; V4 = 10.98±0.47; V IAT = 9.81±0.72; V LMS = 7.50±0.57 and V MLSS = 6.14±0.45m.s-1 and LAC IAT = 2.17±0.93; LAC LMS = 1.17±0.62 and LAC MLSS = 0.84±0.21mmol.L-1. None of the velocities were statistically equivalent to V MLSS (P<0.05). V2, V4 and V LMS showed a good correlation with V MLSS , respectively: r = 0.74; r = 0.78 and r = 0.83, and V IAT did not significantly correlate with V MLSS. Concordance between the protocols was relatively poor, i.e., 3.28±1.00, 4.84±0.30 and 1.43±0.32m.s-1 in terms of bias and 95% agreement limits for V2, V4 and LMS methods when compared to MLSS. Only LAC LMS did not differ statistically from LAC MLSS. Various authors have reported the possibility of the assessment of anaerobic threshold using rapid protocols such as V4 and LMS for humans and horses. This study corroborates the use of these tests, but reveals that adjustments in the protocols are necessary to obtain a better concordance between the tests and the MLSS.


2011 ◽  
Vol 112 (8) ◽  
pp. 3079-3086 ◽  
Author(s):  
Gerhard Smekal ◽  
Serge P. von Duvillard ◽  
Rochus Pokan ◽  
Peter Hofmann ◽  
William A. Braun ◽  
...  

2009 ◽  
Vol 21 (4) ◽  
pp. 493-505 ◽  
Author(s):  
Ralph Beneke ◽  
Hermann Heck ◽  
Helge Hebestreit ◽  
Renate M Leithäuser

The value of blood lactate concentration (BLC) measured during incremental load tests in predicting maximal lactate-steady-state (MLSS) workload has rarely been investigated in children. In 17 children and 18 adults MLSS was 4.1 ± 0.9mmol 1.1. Workload at BLC of 3.0mmol 1.1 determined during an incremental load test explained about 80% of the variance (p < .001) and best predicted MLSS workload independent of age. This was despite the increase in power per time related to maximum incremental load test power being higher (p < .001) in children than in adults. The BLC response to given exercise intensities is faster in children without affecting MLSS.


2018 ◽  
Vol 7 (1) ◽  
pp. 9-16
Author(s):  
Jose Ramon Lillo-Bevia ◽  
Ricardo Moran-Navarro ◽  
Alejandro Martinez-Cava ◽  
Victor Cerezuela ◽  
Jesus G. Pallares

The main aim of this study is to assess the validity of a new cycling protocol to estimate the Maximal Lactate Steady-State workload (MLSS) through a one-day incremental protocol (1day_MLSS). Eleven well-trained male cyclists performed 3 to 4 trials of 30-min constant load test (48-72h in between) to determine their respective MLSS workload. Then, on separate days, each cyclist carried out two identical graded exercise tests, comprised of four 10-minute long stages, with the initial load at 63% of their respective maximal aerobic power, 0.2 W·Kg-1 increments, and blood lactate concentration (BLC) determinations each 5 min. The results of the 1day_MLSS tests were analysed through three different constructs: i) BLC difference between 5th and 10th min of each stage (DIF_5to10), ii) BLC difference between the 10th min of two consecutive stages (DIF_10to10), and iii) difference in the mean BLC between the 5th and 10th min of two consecutive stages (DIF_mean). For all constructs, the physiological steady state was determined as the highest workload that could be maintained with a BLC rise lower than 1mmol·L-1.  No significant differences were detected between the MLSS workload (247 ± 22W) and any of the 1day_MLSS data analysis (250 ± 24W, 245 ± 23W and 243 ± 21W, respectively; p>0.05). When compared to the MLSS workload, strong ICCs and low bias values were found for these three constructs, especially for the DIF_10to10 workload (r=0.960; Bias=2.2 W). High within-subject reliability data were found for the DIF10_10 construct (ICC=0.846; CV=0.4%; Bias=2.2 ± 6.4W). The 1day_MLSS test and DIF_10to10 data analysis is a valid assessment to predict the MLSS workload in cycling, that considerably reduces the dedicated time, effort and human resources that requires the original test. The validity and reliability values reported in this project are higher than those achieved by other previous MLSS estimation tests.


Sports ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 25 ◽  
Author(s):  
Ioannis Nikitakis ◽  
Giorgos Paradisis ◽  
Gregory Bogdanis ◽  
Argyris Toubekis

Background: The purpose of this study was to compare physiological responses during continuous and intermittent swimming at intensity corresponding to critical speed (CS: slope of the distance vs. time relationship using 200 and 400-m tests) with maximal lactate steady state (MLSS) in children and adolescents. Methods: CS and the speed corresponding to MLSS (sMLSS) were calculated in ten male children (11.5 ± 0.4 years) and ten adolescents (15.8 ± 0.7 years). Blood lactate concentration (BL), oxygen uptake ( V · O2), and heart rate (HR) at sMLSS were compared to intermittent (10 × 200-m) and continuous swimming corresponding to CS. Results: CS was similar to sMLSS in children (1.092 ± 0.071 vs. 1.083 ± 0.065 m·s−1; p = 0.12) and adolescents (1.315 ± 0.068 vs. 1.297 ± 0.056 m·s−1; p = 0.12). However, not all swimmers were able to complete 30 min at CS and BL was higher at the end of continuous swimming at CS compared to sMLSS (children: CS: 4.0 ± 1.8, sMLSS: 3.4 ± 1.5; adolescents: CS: 4.5 ± 2.3, sMLSS: 3.1 ± 0.8 mmol·L−1; p < 0.05). V · O2 and HR in continuous swimming at CS were not different compared to sMLSS (p > 0.05). BL, V · O2 and HR in 10 × 200-m were similar to sMLSS and no different between groups. Conclusion: Intermittent swimming at CS presents physiological responses similar to sMLSS. Metabolic responses of continuous swimming at CS may not correspond to MLSS in some children and adolescent swimmers.


Author(s):  
R. Afroundeh ◽  
P. Hofmann ◽  
S. Esmaeilzadeh ◽  
M. Narimani ◽  
A.J. Pesola

AbstractWe examined the agreement between heart rate deflection point (HRDP) variables with maximal lactate steady state (MLSS) in a sample of young males categorized to different body mass statuses using body mass index (BMI) cut-off points. One hundred and eighteen young males (19.9 ± 4.4 years) underwent a standard running incremental protocol with individualized speed increment between 0.3 and 1.0 km/h for HRDP determination. HRDP was determined using the modified Dmax method called S.Dmax. MLSS was determined using 2-5 series of constant-speed treadmill runs. Heart rate (HR) and blood lactate concentration (La) were measured in all tests. MLSS was defined as the maximal running speed yielding a La increase of less than 1 mmol/L during the last 20 min. Good agreement was observed between HRDP and MLSS for HR for all participants (±1.96; 95% CI = −11.5 to +9.2 b/min, ICC = 0.88; P < 0.001). Good agreement was observed between HRDP and MLSS for speed for all participants (±1.96; 95% CI = −0.40 to +0.42 km/h, ICC = 0.98; P < 0.001). The same findings were observed when participants were categorized in different body mass groups. In conclusion, HRDP can be used as a simple, non-invasive and time-efficient method to objectively determine submaximal aerobic performance in nonathletic young adult men with varying body mass status, according to the chosen standards for HRDP determination.


Author(s):  
Mário C. Espada ◽  
Francisco B. Alves ◽  
Dália Curto ◽  
Cátia C. Ferreira ◽  
Fernando J. Santos ◽  
...  

We aimed to compare the velocity, physiological responses, and stroke mechanics between the lactate parameters determined in an incremental step test (IST) and maximal lactate steady state (MLSS). Fourteen well-trained male swimmers (16.8 ± 2.8 years) were timed for 400 m and 200 m (T200). Afterwards, a 7 × 200-m front-crawl IST was performed. Swimming velocity, heart rate (HR), blood lactate concentration (BLC), stroke mechanics, and rate of perceived exertion (RPE) were measured throughout the IST and in the 30-min continuous test (CT) bouts for MLSS determination. Swimming velocities at lactate threshold determined with log-log methodology (1.34 ± 0.06 m∙s−1) and Dmax methodology (1.40 ± 0.06 m∙s−1); and also, the velocity at BLC of 4 mmol∙L−1 (1.36 ± 0.07) were not significantly different from MLSSv, however, Bland–Altman analysis showed wide limits of agreement and the concordance correlation coefficient showed poor strength of agreement between the aforementioned parameters which precludes their interchangeable use. Stroke mechanics, HR, RPE, and BLC in MLSSv were not significantly different from the fourth repetition of IST (85% of T200), which by itself can provide useful support to daily practice of well-trained swimmers. Nevertheless, the determination of MLSSv, based on a CT, remains more accurate for exercise evaluation and prescription.


2012 ◽  
Vol 37 (6) ◽  
pp. 1147-1152 ◽  
Author(s):  
Camila Coelho Greco ◽  
Luis Fabiano Barbosa ◽  
Renato Aparecido Corrêa Caritá ◽  
Benedito Sérgio Denadai

The purpose of this study was to analyze the effect of recovery type (passive vs. active) during prolonged intermittent exercises on the blood lactate concentration (MLSS) and work rate (MLSSwint) at maximal lactate steady state. Nineteen male trained cyclists were divided into 2 groups for the determination of MLSSwint using passive (maximal oxygen uptake = 58.1 ± 3.5 mL·kg–1·min–1; N = 9) or active recovery (maximal oxygen uptake = 60.3 ± 9.0 mL·kg–1·min–1; N = 10). They performed the following tests, on different days, on a cycle ergometer: (i) incremental test until exhaustion to determine maximal oxygen uptake; (ii) 2 to 3 continuous submaximal constant work rate tests (CWRT) for the determination of the work rate at continuous maximal lactate steady state (MLSSwcont); and (iii) 2 to 3 intermittent submaximal CWRT (7 × 4 min and 1 × 2 min, with 2-min recovery) with either passive or active recovery for the determination of MLSSwint. MLSSwint was significantly higher when compared with MLSSwcont for both passive recovery (294.7 ± 32.2 vs. 258.7 ± 24.5 W, respectively) and active recovery groups (300.5 ± 23.9 vs. 273.2 ± 21.5 W, respectively). The percentage increments in MLSSwint were similar between conditions (passive = 13% vs. active = 10%). MLSS (mmol·L–1) was not significantly different between MLSSwcont and MLSSwint for either passive recovery (4.50 ± 2.10 vs. 5.61 ± 1.78, respectively) and active recovery (4.06 ± 1.49 vs. 4.91 ± 1.91, respectively) conditions. We can conclude that using a work/rest ratio of 2:1, MLSSwint was ∼10%–13% higher than MLSSwcont, irrespective of the recovery type performed during prolonged intermittent exercises.


Sign in / Sign up

Export Citation Format

Share Document