scholarly journals Nitrogen isotope fractionation in the fodder tree tagasaste (Chamaecytisus proliferus) and assessment of N2 fixation inputs in deep sandy soils of Western Australia

2000 ◽  
Vol 27 (10) ◽  
pp. 921 ◽  
Author(s):  
Murray J. Unkovich ◽  
John S. Pate ◽  
Edward C. Lefroy ◽  
David J. Arthur

Nitrogen (N) isotope fractionation and symbiotic N fixation were investigated in the shrub legume tagasaste, growing in the glasshouse and field. In a pot study of effectively nodulated plants supplied with 0, 1, 5 and 10 mM nitrate [stable isotope 15N (δ15N) of 3.45‰], the δ15N of dry matter N of fully symbiotic cultures indicated a greater isotope fractionation during distribution of N between nodules, stems, leaves and roots than for N2 fixation itself, with whole-plant δ15N being near zero (–0.46 to 0.42‰). Regardless of whether plants were field-grown, pot-cultured, fixing N2 or utilising mineral N, woody stems were depleted in 15N relative to all other plant parts. The similar orders of ranking of δ15N for plant components of the nitrate-treated and fully symbiotic plants, and a general increase in δ15N as plants were exposed to increasing concentrations of nitrate, indicated that N isotope fractionation can be accounted for, and thus not undermine 15N natural abundance as means of measuring N2 fixation inputs in tagasaste trees. In pot culture the percentage of plant N derived from the atmosphere (%Ndfa) by symbiotic N2 fixation fell from 85 to 37% when the nitrate supply was increased from 1 to 10 mM, with evidence of nitrate N being preferentially allocated to roots. δ15N natural abundance assessments of N2 fixation of 4-year-old trees of field-grown tagasaste in alley (550 trees ha-1) or plantation (2330 trees ha-1) spacing were undertaken at a study site at Moora, Western Australia, over a 2-year period of shoot regrowth (coppicing). Cumulative N yields and %Ndfa were similar for trees of alley and plantation spacing, with much less coppice N accumulation in the first compared to the second year after cutting. Scaling values from a tree to plot area basis, and using a mean %Ndfa value of 83% for all trees at the site, inputs of fixed N into current biomass plus fallen litter over the 2 years of coppicing were calculated to be 83 kg N ha-1 year-1 for the alley and 390 kg N ha-1 year-1 for the plantation spacing. Although the plantation tagasaste fixed 587 kg N ha-1 in the second year, close to the maximum value reported in the literature for any N2-fixing system, this should not be seen as typical where the trees are used for animal production, since grazing and cutting management will substantially reduce productivity and N2 fixation input.

1999 ◽  
Vol 50 (6) ◽  
pp. 1047 ◽  
Author(s):  
B. S. Dear ◽  
M. B. Peoples ◽  
P. S. Cocks ◽  
A. D. Swan ◽  
A. B. Smith

The proportions of biologically fixed (Pfix) plant nitrogen (N) and the total amounts of N2 fixed by subterranean clover (Trifolium subterraneum L.) growing in pure culture and in mixtures with different densities (5, 10, 20, or 40plants/m2) of newly sown phalaris (Phalaris aquatica L.) or lucerne (Medicago sativa L.) were followed over 3 years in a field study using the 15N natural abundance technique. The amount of fixed N in subterranean clover was linearly related to shoot biomass. Over the 3-year period, subterranean clover fixed 23–34 kg N/t shoot biomass compared with 17–29 kg N/t shoot biomass in lucerne. Based on above-ground biomass, pure subterranean clover fixed 314 kg N/ha over the 3 years compared with 420–510 kg N/ha by lucerne–clover mixtures and 143–177 kg N/ha by phalaris–clover mixtures. The superior N2 fixation by the lucerneŒsubterranean clover mixtures was due to the N fixed by the lucerne and the presence of a higher subterranean clover biomass relative to that occurring in the adjacent phalaris plots. In the first year, 92% of subterranean clover shoot N was derived from fixation compared with only 59% of lucerne. The reliance of clover upon fixed N2 remained high (73–95%) throughout the 3 years in all swards, except in pure subterranean clover and lucerne in August 1996 (56 and 64%, respectively). Subterranean clover usually fixed a higher proportion of its N when grown in mixtures with phalaris than with lucerne. The calculated Pfix values for lucerne (47–61% in 1995 and 39–52% in 1996) were consistently lower than in subterranean clover and tended to increase with lucerne density. Although lucerne derived a lower proportion of its N from fixation than subterranean clover, its tissue N concentration was consistently higher, indicating it was effective at scavenging soil mineral N. It was concluded that including lucerne in wheat-belt pastures will increase inputs of fixed N. Although lucerne decreased subterranean clover biomass, it maintained or raised Pfix values compared with pure subterranean clover swards. The presence of phalaris maintained a high dependence on N2 fixation by subterranean clover, but overall these swards fixed less N due to the lower clover herbage yields. Perennial and annual legumes appear compatible if sown in a mix and can contribute more N2 to the system than where the annual is sown alone or with a perennial grass. These findings suggest that increases in the amount of N2 fixed can be achieved through different legume combinations without interfering greatly with the N fixation process. Different combinations may also result in more efficient use of fixed N2 through reduced leaching. Further work looking at combinations of annuals possibly with different maturity times, different annual and perennial legume combinations, and pure combinations of perennial (e.g. lucerne) could be investigated with the aim of maximising N2 fixation and use. Grazing management to encourage clover production in mixtures with phalaris will be necessary before the potential of subterranean clover to contribute fixed N2 in these swards is fully realised.


1995 ◽  
Vol 46 (1) ◽  
pp. 225 ◽  
Author(s):  
JA Doughton ◽  
PG Saffigna ◽  
I Vallis ◽  
RJ Mayer

The 15N enrichment and 15N natural abundance methods for estimating N2 fixation in chickpea were compared over a range of soil NO3-N levels at crop establishment varying from 10 to 326 kg N/ha (0-120 cm depth). Barley was used as a non-N2 fixing control crop. Both methods estimated reduced N2 fixation as soil NO3-N levels at crop establishment increased. Similar estimates of % N2 fixation were obtained at high values, but at low values the enrichment method gave lower estimates, some of which were negative. The 15N natural abundance method provided realistic estimates of % N2 fixation across all soil N03-N levels at crop establishment. An asymptotic curve described a close ( R2 = 0.95) relationship between these factors. Standard errors of estimates of means for the 15N natural abundance method remained acceptable and relatively stable over the full range of measurements; however, with the 15N enrichment method they became unacceptably large at low values of % N2 fixation. These large errors may have been partly due to legume and control plants assimilating mineral N of differing 15N enrichment. High mineral N levels associated with low values of % N2 fixation were also shown to reduce reliability of N2 fixation values estimated by the 15N enrichment method. These errors caused potentially greater inaccuracy at low values of % N2 fixation than at high values. To compare N2 fixation means statistically, transformations were necessary to stabilize variance and to impart lower weightings to plots with low values of % N2 fixation.


1983 ◽  
Vol 63 (3) ◽  
pp. 593-605 ◽  
Author(s):  
M. S. AULAKH ◽  
D. A. RENNIE ◽  
E. A. PAUL

A 2-yr field study was carried out to assess gaseous losses of N as N2O + N2 from two Black Chernozemic soils, where during year 1 wheat was underseeded to clover and in year 2, the clover in late June was (a) green-manured and the field fallowed, (b) harvested for hay and then fallowed, or (c) harvested for hay and allowed to regrow. Gaseous losses during year 1 were small and ranged from 1.3 kg N∙ha−1 (Blaine Lake clay loam) to 4.7 kg N∙ha−1 (Hoey clay loam). Gaseous losses were somewhat higher during the second year, but differences between the various clover management practices were generally small. The contribution of lower soil horizons towards gaseous nitrogen losses were shown to be negligible. Soil moisture, mean air temperature, nitrate + nitrite, and ammonia N concentrations collectively accounted for 37–66% of the variations in N2O fluxes. It is concluded that incorporation of clover followed by a partial fallow results in substantially less gaseous loss of nitrogen than the standard summerfallowing practice, and at the same time significantly increases mineral nitrogen accumulation in the soil. Key words: Acetylene inhibition technique, denitrification, nitrification, mineralization, green manuring


2010 ◽  
Vol 34 (4) ◽  
pp. 1093-1101 ◽  
Author(s):  
Eduardo Chagas ◽  
Adelson Paulo Araújo ◽  
Bruno José Rodrigues Alves ◽  
Marcelo Grandi Teixeira

Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.


1983 ◽  
Vol 29 (2) ◽  
pp. 231-234 ◽  
Author(s):  
R. G. L. McCready ◽  
W. D. Gould ◽  
R. W. Barendregt

Desulfovibrio reduce NO3−to NH4+ via a dissimilatory pathway. In 21 days, four strains of Desulfovibrio reduced 36–48% of the available NO3− to ammonium. During this reductive process extensive nitrogen isotope fractionation occurred: the product NH4+ was enriched in 15N in the initial sample, then became enriched in 14N to a minimum value at approximately 20–25% reaction, and then became isotopically heavier as the reaction proceeded.


Nitrogen ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 86-98
Author(s):  
Kelly Nery Bighi ◽  
Ranieri Ribeiro Paula ◽  
Marcos Vinícius Winckler Caldeira ◽  
Diego Lang Burak ◽  
Eduardo de Sá Mendonça ◽  
...  

We investigated the nitrogen pools in monocultures of legume species widely used in reforestation in Brazil that have contrasting growth and nitrogen acquisition strategies. The plantations were established with the slow-growing and N2-fixing tree Anadenanthera peregrina var. peregrina, and the fast-growing and non-fixing tree Schizolobium parahyba var. amazonicum. The measurements of N pools in the tree biomass and the soil followed standard methods and were carried out on 54 experimental plots. The N2 fixation pools were evaluated by abundance natural of 15N and the N accretion methods. The soil N content was of similar magnitude between species and stand densities. The species showed similar amounts of N in the biomass, but divergent patterns of N accumulation, as well as the 15N signature on the leaves. S. parahyba accumulated most N in the stem, while A. peregrina accumulated N in the roots and leaves. However, the N accumulation in biomass of A. peregrina stand was less constrained by environment than in S. parahyba stands. The percentage of N derived from N2 fixation in A. peregrina stands decreased with the increase of stand density. The biological N2 fixation estimates depended on the method and the response of tree species to environment.


1986 ◽  
Vol 37 (1) ◽  
pp. 95 ◽  
Author(s):  
IC Potter ◽  
JW Penn ◽  
KS Brooker

The absence of marine records for M. dalli below latitude 31�S., together with data on gonadal stages and spermatophore deposition on females of this species in the Swan estuary, provide very strong indications that the western school prawn typically breeds in estuarine environments in south-western Australia. The 0 + recruits, which first appeared in samples in February, remained in the estuary during the following months and by November had reached a size suitable for exploitation. At this time they were approaching sexual maturity and were starting to move from the shallows to the deeper waters of the estuary where they remained for their second year of life. In contrast to Australian Penaeus species, M. dalli mates during the intermoult period when the shell is hard rather than immediately after moulting.


Sign in / Sign up

Export Citation Format

Share Document