Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate.

2000 ◽  
Vol 27 (10) ◽  
pp. 941 ◽  
Author(s):  
John B. Passioura ◽  
Rana Munns

We subjected wheat and barley plants to rapid environmental changes, and monitored leaf elongation rates for several hours thereafter. Changes in light, humidity or salinity caused sudden rises (if the leaf water status rose) or falls (if the leaf water status fell) in leaf elongation rate, followed by a recovery phase that lasted 20–60 min. After a step change in light or humidity, the growing leaf eventually resumed its original elongation rate, although the shoot water status, as monitored by leaf thickness, differed markedly. Salinity, on the other hand, produced a persistent change in leaf elongation rate, which settled down to a lower steady rate after the transient response was over. To determine whether the sudden changes in leaf elongation rate were due to changes in leaf water relations, we kept shoots fully hydrated through the environmental changes by automatically pressurising the roots to maintain leaf xylem on the point of bleeding. This annulled the environmental effects on leaf water status, and thereby largely removed the changes in leaf elongation rate. The only exception was at the dark:light transition, when the leaf elongation rate of pressurised plants rose sharply (in contrast to that of unpressurised plants, which fell), then underwent damped oscillations before settling at about its initial value. The sudden excursions of leaf growth in unpressurised plants accompanying the environmental changes were undoubtedly due to changes in leaf water status. The subsequent, generally complete, return of the leaf elongation rate to its initial value within an hour, despite the persistent change in leaf water status, suggests that a control system is operating at a time scale of tens of minutes that eventually overrides, partially or completely, the rapid effects of changes in leaf water status.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongtian Luo ◽  
Che-Ling Ho ◽  
Brent R. Helliker ◽  
Eleni Katifori

Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.



2002 ◽  
Vol 29 (1) ◽  
pp. 111 ◽  
Author(s):  
Grant R. Cramer ◽  
Steve A. Quarrie

In this paper we tested the hypothesis that the leaf growth reduction of salt-stressed maize is regulated by the abscisic acid (ABA) concentrations in the growing zone of the leaf. Leaf elongation rate (LER) of maize (Zea mays L.) was rapidly inhibited by salinity (80 mM NaCl), and the (+)-ABA concentration increased significantly in the growing zone of the leaf. Upon removal of salinity, ABA concentrations decreased rapidly in the growing zone and LER increased to control levels. Four maize genotypes differing in their responses to salinity were compared over a range of leaf ABA concentrations. (+)-ABA concentrations in the growing zone of the leaf were highly correlated with LER inhibition for all four genotypes. However, the sensitivity of LER to leaf ABA concentrations differed amongst the genotypes. Thus, for each genotype, ABA concentrations in the growing zone of the leaf were a good predictor of maize LER response to salinity.



1997 ◽  
Vol 24 (1) ◽  
pp. 9 ◽  
Author(s):  
R. J. Stirzaker ◽  
P. T. Hayman ◽  
B. G. Sutton

Field and laboratory experiments were carried out to determine whether modification of the aerial environment in a hot climate would improve the leaf growth rate and ultimately the yield of well- irrigated processing tomatoes, Lycopersicon esculentum Mill. cv. UC82B. In the field, the transpiration rate was modified by frequent applications of a fine mist. Misting reduced the diurnal fall in leaf water potential by up to 0.5 MPa, but had no effect on weekly vegetative growth or fruit yield, compared to a control treatment which was not misted but had accurately managed drip irrigation. To investigate these processes further, we studied the relationship between leaf water status and leaf growth in the laboratory using equipment in which a pot is placed inside a pressure chamber, with the leaves enclosed in a cuvette. Immediately following a misting event, both the hydrostatic pressure of the leaf xylem and the leaf expansion rate increased. The increase in leaf expansion rate was sustained for about 10 min and then fell below the pre-misted rate so that the net effect of a misting event on leaf expansion was small or nil. When an elevated leaf water status was sustained by pressurising the soil for over an hour, there was only a transient increase in leaf growth, and leaf growth stopped after the pressure was removed. Both in the laboratory and field, the overall leaf or vegetative growth was not sensitive to rapid fluctuations in leaf water status. The implication is that, if sufficient attention is paid to managing the root zone of crops, the more expensive and less efficient modification of the shoot environment is unnecessary.



2002 ◽  
Vol 29 (4) ◽  
pp. 535 ◽  
Author(s):  
Grant R. Cramer ◽  
Steve A. Quarrie

In this paper we tested the hypothesis that the leaf growth reduction of salt-stressed maize is regulated by the abscisic acid (ABA) concentrations in the growing zone of the leaf. Leaf elongation rate (LER) of maize (Zea mays L.) was rapidly inhibited by salinity (80 mM NaCl), and the (+)-ABA concentration increased significantly in the growing zone of the leaf. Upon removal of salinity, ABA concentrations decreased rapidly in the growing zone and LER increased to control levels. Four maize genotypes differing in their responses to salinity were compared over a range of leaf ABA concentrations. (+)-ABA concentrations in the growing zone of the leaf were highly correlated with LER inhibition for all four genotypes. However, the sensitivity of LER to leaf ABA concentrations differed amongst the genotypes. Thus, for each genotype, ABA concentrations in the growing zone of the leaf were a good predictor of maize LER response to salinity.





2021 ◽  
Vol 43 (5) ◽  
Author(s):  
Amin Taheri-Garavand ◽  
Abdolhossein Rezaei Nejad ◽  
Dimitrios Fanourakis ◽  
Soodabeh Fatahi ◽  
Masoumeh Ahmadi Majd


1979 ◽  
Vol 92 (1) ◽  
pp. 83-89 ◽  
Author(s):  
H. G. Jones

SummaryThe potential offered for plant breeding programmes by visual scoring techniques for plant water status was investigated in rice and spring wheat. It was found that differing plant morphology could seriously bias visual estimates of leaf water potential, particularly in spring wheat. In spite of this problem, it was found that at least for rice, this type of approach may have potential in future breeding programmes where an estimate of leaf water status is required, such as those for drought tolerance, so long as a high intensity of selection is not necessary.



2015 ◽  
Vol 54 ◽  
pp. 96-107 ◽  
Author(s):  
Zhenxing Cao ◽  
Quan Wang ◽  
Chaolei Zheng


2013 ◽  
Vol 85 (1) ◽  
pp. 371-377 ◽  
Author(s):  
Marcos F Silva ◽  
Edson M. V Porto ◽  
Dorismar D Alves ◽  
Cláudio M.T Vitor ◽  
Ignacio Aspiazú

This study aims to evaluate the morphogenetic characteristics of three cultivars of Brachiaria brizantha subjected to nitrogen fertilization. The design was a randomized block in factorial arrangement 4x3; three cultivars of B. brizantha - Marandu, Piatã, Xaraés and four nitrogen levels - 0, 80, 160 and 240 kg/ha, with three replications. The experimental units consisted of plastic pots filled with 5 dm3 of soil. Thereupon the establishment fertilization, varieties were sowed directly in the pots, leaving, after thinning, five plants per pot. Forty-five days after planting, it was done a standardization cut at 10 cm tall. Nitrogen levels were distributed according to the treatments, divided in three applications. The morphogenetic characteristics were evaluated in three tillers per sampling unit and data were submitted to analysis of variance and regression. For all evaluated characteristics there was no interaction between factors cultivar and nitrogen levels, verifying only the effects of nitrogen on the variables leaf appearance rate and phyllochron. The dose 240 kg/ha of N corresponds to the greater leaf appearance rate. Cultivar Marandu shows the higher leaf blade: pseudostem and ratio of leaf elongation rate and elongation pseudostem, which favors higher forage quality.





Sign in / Sign up

Export Citation Format

Share Document