Transpiration and Leaf Area Under Elevated CO2: Effects of Soil Water Status and Genotype in Wheat

1995 ◽  
Vol 22 (1) ◽  
pp. 33 ◽  
Author(s):  
AB Samarakoon ◽  
WJ Muller ◽  
RM Gifford

Transpiration rate, leaf area expansion, water use and water-use efficiency (WUE) of spaced plants of wheat (cvv. Matong and Quarrion), were examined at ambient and twice ambient CO2 concentrations in wet and drying soil regimes. A hypothesis tested was that both stomatal conductance (gs) and leaf area development are so regulated by the plant in relation to soil water status that the reduction of approximately 40% in gs in high CO2 has no permanent impact on whole-plant water use. Whereas, during a soil drying cycle, leaf area increase under elevated CO2 counterbalanced closely for reduced gs in terms of soil water depletion as reported elsewhere, this counterbalance was neither exact at all times, nor did it apply when the soil was continuously wet. In wet soil, leaf area was not enhanced much by elevated CO2, probably because, under the high radiation and nutritional conditions used, the tillering rate was almost maximal anyway. Quarrion, having a 40% lower gs than Matong genetically, did not counter-balance a reduced transpiration rate with a larger leaf area under either drying or wet soil conditions. These results support rejection, for wheat, of the hypothesis posed; elevated CO2 increased leaf area mainly by virtue of the direct photosynthetic increase rather than changed soil water status. In wet soil, low gs Quarrion had a higher CO2 effect on WUE (+ 73 to 82%) than did Matong (+54 to 65%). In drying soil, both cultivars had a similar increase in WUE at high CO2 (+60 to 68%).

1996 ◽  
Vol 23 (1) ◽  
pp. 63 ◽  
Author(s):  
AB Samarakoon ◽  
RM Gifford

Cotton (Gossypium hirsutum cv. Sicala 34) was grown at 352 ('low CO2') or 710 ('high CO2') μL L-1 atmospheric CO2 in continuously wet soil, or in drying soil, or in drying soil re-wetted after plant wilting. In wet soil, the approximately 15% reduction in transpiration per unit leaf area owing to high CO2 was only half that for other species, whereas effects on growth and leaf area were relatively larger. Consequently, water use per plant was 45-50% higher for high CO2 plants in contrast to other species for which the rate of water use is either the same or lower in high CO2. Greater plant water use early in a drying cycle caused the soil to dry faster under high CO2 than under low CO2. The addition of the consequential greater water stress at high CO2 in drying soil to the direct CO2 effect on stomata caused the transpiration rate of high CO2 plants to fall by up to 60% as the soil dried relative to plants drying at low CO2. After re-wetting the dry soil, the reduction in transpiration rate at high CO2 returned within hours to the value of 15% seen in wet soil. The results were inconsistent with the idea that water deficits increase the sensitivity of stomatal aperture to CO2. Other consequences of drier soil under high CO2 compared with low CO2 were: (a) unlike in many other species, in cotton, the relative growth enhancement by high CO2 is not higher under drying soil compared with wet soil owing to the opposite effect on soil water content; and (b) the increased water-use efficiency in drying soil relative to wet soil was greater in high CO2 plants than in low CO2. The confounding of indirect effects of soil water with the direct CO2 effects may explain the wide variability of literature reports about CO2 effects on stomatal conductance and water use.


Crop Science ◽  
1989 ◽  
Vol 29 (5) ◽  
pp. 1212-1216 ◽  
Author(s):  
M. Badaruddin ◽  
D. W. Meyer

2011 ◽  
Vol 34 (7) ◽  
pp. 1207-1222 ◽  
Author(s):  
K. R. ALBERT ◽  
H. RO-POULSEN ◽  
T. N. MIKKELSEN ◽  
A. MICHELSEN ◽  
L. VAN DER LINDEN ◽  
...  

1975 ◽  
Vol 26 (5) ◽  
pp. 871 ◽  
Author(s):  
GG Johns ◽  
RCG Smith

The accuracy of six published functions for deriving dryland water use from evaporative demand and soil water status was assessed by incorporating them in water budgets which were used to estimate dryland soil water status from actual climatic records. Budget-derived estimates were compared with values actually measured under improved pastures in the field over an 842 day period. The root mean square (RMS) of the differences between computed and observed soil water values was used to evaluate the various functions. RMS values were found to vary from 8.1 to 29.5 mm for the various functions tested. Soil water estimations made by using a simple ratio function were generally as good as or better than those made by using more complex functions. The sensitivity of the various functions to changes in their input assumptions was tested. The results of these tests will facilitate the selection of the optimum functions for conditions other than those encountered in this study. Reduced accuracy of soil water prediction resulted from the use of functions to set water use equal to the potential rate, regardless of the overall dryness of the soil profile, whenever recent rainfall was calculated to have made water available in the surface zone.


1996 ◽  
Vol 23 (1) ◽  
pp. 53 ◽  
Author(s):  
AB Samarakoon ◽  
RM Gifford

It is unclear from the literature as to whether growth of C4 species is responsive to elevated atmospheric CO2 concentration. Reports vary between no response to strong response. To explore the origin of this discrepancy, spaced plants of maize (Zea mays) were grown at atmospheric CO2 concentrations of 362 or 717 μL L-1 under continuously wet or drying soil regimes. The aims were to evaluate the comparative growth promotion from elevated CO2 in a C4 plant under the two contrasting water regimes and the causes of any such promotion, and also how water-use efficiency (WUE) is influenced by high CO2 under the two water regimes. In wet soil, transpiration rate was reduced on average by 29% at high CO2, but neither total dry matter nor plant height was significantly affected by CO2 level. Leaf area was not influenced significantly, so daily water use per plant was 25% lower and WUE was increased entirely due to reduced water use at high CO2. In soil that was drying from field capacity, plants in high CO2 used about 30% less water than those in ambient CO2 while the soil was still wet. This resulted in higher soil water content at high CO2. Plant growth showed a marked response, accumulating 35% more leaf area and 50% more dry matter. Young internodes elongated up to 170% more, giving taller plants. The growth enhancement was largely due to higher average net assimilation rate indicating that C4 photosynthesis responded to elevated CO2 during drought. In drying soil the increase in WUE was due to both increased dry matter and reduced water use, the contribution from each depending on the stage of soil drying. We hypothesise therefore that literature examples where maize growth responded to elevated CO2 may have involved (possibly unrecognised) minor water deficits.


2017 ◽  
Vol 225 ◽  
pp. 525-532 ◽  
Author(s):  
Tarek K. Zin El-Abedin ◽  
Mohamed A. Mattar ◽  
A.A. Alazba ◽  
Hussein M. Al-Ghobari

2009 ◽  
Vol 134 (5) ◽  
pp. 543-552 ◽  
Author(s):  
Ralf Uptmoor ◽  
Mildred Osei-Kwarteng ◽  
Susanne Gürtler ◽  
Hartmut Stützel

The combination of quantitative trait loci (QTL) analysis and ecophysiological modeling has been suggested as an approach to reveal the genetic basis of complex traits since phenotypes change with time and environmental conditions and the variation within populations can be described by genotype-specific parameterization of response curves on time and influential environmental factors. The objectives of the present study are a genotype-specific parameterization of a model describing leaf area development under well-watered and drought stress conditions, the use of QTL for estimating model input parameters, an evaluation of the model, and a comparison of the genotype-specific and QTL-based model parameterization. We used a two-phase linear function to describe preflowering leaf area development in a Brassica oleracea L. doubled haploid population. To illustrate effects of drought on leaf growth, the function was combined with a plateau function, which estimates the soil water status at which stress effects begin to reduce leaf expansion, a genotype-specific slope of the response to soil water status, and the soil water status at which leaf expansion becomes zero. A total number of 14 QTL were detected on the parameters of the two-phase linear function describing preflowering leaf area development and the plateau function describing the effects of drought on leaf area development. Nine of these QTL colocalized to QTL detected on data of static leaf area measurements and osmotic adjustment. The entire model was able to distinguish between genotypes during later growth stages under well-watered and drought stress conditions. However, the predictability was largely reduced when drought stress became more severe at the final measurement dates. Independent evaluation trials showed that the accuracy of the model was on the same level or even higher when genotype specific input parameters were replaced by allele-specific QTL effects.


2011 ◽  
pp. no-no
Author(s):  
K.R. Albert ◽  
H. Ro-Poulsen ◽  
T.N. Mikkelsen ◽  
A. Michelsen ◽  
L. van der Linden ◽  
...  

1984 ◽  
Vol 11 (5) ◽  
pp. 361 ◽  
Author(s):  
JIL Morison ◽  
RM Gifford

Plants of 16 agricultural and horticultural species were grown from seed in spaced pots in two glasshouses, one with normal and one with twice the present atmospheric CO2 concentration. Water use and leaf area development were measured while soil moisture content declined from field capacity to c. 6%. High CO2 increased leaf area in all but two species, the increase varying from 20 to 75%. However, the water loss per plant followed a similar time course to that of plants in control CO2 concentration because of the reduction of daily transpiration rate per unit leaf area (range 4-39%). Cowpea and sunflower plants rewatered after one soil drying cycle showed 9 and 5%, respectively, lower transpiration rate in high CO2 over a subsequent drying cycle than in the first cycle. Averaging across all species and soil moisture contents, transpiration rate was less reduced by high CO2 (21%) than was stomatal conductance (36%) and this is attributed to the increased leaf temperature caused by reduced stomatal conductance.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


Sign in / Sign up

Export Citation Format

Share Document