Plant Growth and Water Use With Limited Water Supply in High CO2 Concentrations. I. Leaf Area, Water Use and Transpiration

1984 ◽  
Vol 11 (5) ◽  
pp. 361 ◽  
Author(s):  
JIL Morison ◽  
RM Gifford

Plants of 16 agricultural and horticultural species were grown from seed in spaced pots in two glasshouses, one with normal and one with twice the present atmospheric CO2 concentration. Water use and leaf area development were measured while soil moisture content declined from field capacity to c. 6%. High CO2 increased leaf area in all but two species, the increase varying from 20 to 75%. However, the water loss per plant followed a similar time course to that of plants in control CO2 concentration because of the reduction of daily transpiration rate per unit leaf area (range 4-39%). Cowpea and sunflower plants rewatered after one soil drying cycle showed 9 and 5%, respectively, lower transpiration rate in high CO2 over a subsequent drying cycle than in the first cycle. Averaging across all species and soil moisture contents, transpiration rate was less reduced by high CO2 (21%) than was stomatal conductance (36%) and this is attributed to the increased leaf temperature caused by reduced stomatal conductance.

1996 ◽  
Vol 23 (1) ◽  
pp. 63 ◽  
Author(s):  
AB Samarakoon ◽  
RM Gifford

Cotton (Gossypium hirsutum cv. Sicala 34) was grown at 352 ('low CO2') or 710 ('high CO2') μL L-1 atmospheric CO2 in continuously wet soil, or in drying soil, or in drying soil re-wetted after plant wilting. In wet soil, the approximately 15% reduction in transpiration per unit leaf area owing to high CO2 was only half that for other species, whereas effects on growth and leaf area were relatively larger. Consequently, water use per plant was 45-50% higher for high CO2 plants in contrast to other species for which the rate of water use is either the same or lower in high CO2. Greater plant water use early in a drying cycle caused the soil to dry faster under high CO2 than under low CO2. The addition of the consequential greater water stress at high CO2 in drying soil to the direct CO2 effect on stomata caused the transpiration rate of high CO2 plants to fall by up to 60% as the soil dried relative to plants drying at low CO2. After re-wetting the dry soil, the reduction in transpiration rate at high CO2 returned within hours to the value of 15% seen in wet soil. The results were inconsistent with the idea that water deficits increase the sensitivity of stomatal aperture to CO2. Other consequences of drier soil under high CO2 compared with low CO2 were: (a) unlike in many other species, in cotton, the relative growth enhancement by high CO2 is not higher under drying soil compared with wet soil owing to the opposite effect on soil water content; and (b) the increased water-use efficiency in drying soil relative to wet soil was greater in high CO2 plants than in low CO2. The confounding of indirect effects of soil water with the direct CO2 effects may explain the wide variability of literature reports about CO2 effects on stomatal conductance and water use.


2019 ◽  
Vol 6 (1) ◽  
pp. 493 ◽  
Author(s):  
Fabio Rodrigues Ramos ◽  
Antonio Lucineudo Oliveira Freire

This study aimed to evaluate the physiological behavior of faveleira (Cnidoscolus quercifolius Pohl) plants grown in the field, in Caatinga, during wet and dry seasons. Adult plants were selected for evaluation in March and April (wet season) and May and June (dry season), during 2016. We evaluated the soil water content, water potential (Ψw), osmotic potential (Ψπ), relative water content (RWC), stomatal conductance (gs), transpiration rate (E), photosynthetic rate (A), intercellular CO2 concentration (Ci), instantaneous water use efficiency (A/E) and carboxylation efficiency (A/Ci). The reduction in water availability in the soil promoted a marked decrease in soil water potential, which was more affected than the relative water content. The opening of the stomata was affected by the decrease in soil moisture content, reducing the stomatal conductance, transpiration rate, photosynthesis rate, instantaneous water use efficiency and carboxylation efficiency. The photosynthesis was more affected than transpiration by the reduction in soil moisture content.


1984 ◽  
Vol 11 (5) ◽  
pp. 375 ◽  
Author(s):  
JIL Morison ◽  
RM Gifford

Plants of 18 species were grown from seed in two glasshouses, one with normal and one with twice the present atmospheric CO2 concentration. Plants were grown singly with a diminishing soil moisture content and were harvested either after the initial period of rapid growth and water use or after subsequent prolonged soil drying. Plant dry weight (DW) was increased substantially by high CO2 in all but two species (cotton and maize) at the first harvest (average increase of 65%, range from 26 to 132%). Over the whole period, increases in DW with high CO2 (average of 53%) were associated with increases in water use efficiency (WUE) of between 40 and 80% (average of 67% for all species). Cowpea and sunflower plants grown through two additional soil moisture drying cycles showed 26 and 21% increases, respectively, in the effect of high CO2 on WUE. Approximate calculations indicated that high CO2 increased the apparent efficiency of use of intercepted radiation by 11-49% (average of 27%) in C3 species but in C4 species there was no effect. The effect of high CO2 on the partitioning of DW varied between species and between harvests. During the first period, 14 species showed increased specific leaf weight of 10-40% in high CO2 and 16 species showed no effect of high CO2 on the root : shoot ratio. Over the whole experiment, eight species had lower leaf to total plant weight ratio in high CO2 attributable to increased non-leaf aerial tissues.


1995 ◽  
Vol 22 (1) ◽  
pp. 33 ◽  
Author(s):  
AB Samarakoon ◽  
WJ Muller ◽  
RM Gifford

Transpiration rate, leaf area expansion, water use and water-use efficiency (WUE) of spaced plants of wheat (cvv. Matong and Quarrion), were examined at ambient and twice ambient CO2 concentrations in wet and drying soil regimes. A hypothesis tested was that both stomatal conductance (gs) and leaf area development are so regulated by the plant in relation to soil water status that the reduction of approximately 40% in gs in high CO2 has no permanent impact on whole-plant water use. Whereas, during a soil drying cycle, leaf area increase under elevated CO2 counterbalanced closely for reduced gs in terms of soil water depletion as reported elsewhere, this counterbalance was neither exact at all times, nor did it apply when the soil was continuously wet. In wet soil, leaf area was not enhanced much by elevated CO2, probably because, under the high radiation and nutritional conditions used, the tillering rate was almost maximal anyway. Quarrion, having a 40% lower gs than Matong genetically, did not counter-balance a reduced transpiration rate with a larger leaf area under either drying or wet soil conditions. These results support rejection, for wheat, of the hypothesis posed; elevated CO2 increased leaf area mainly by virtue of the direct photosynthetic increase rather than changed soil water status. In wet soil, low gs Quarrion had a higher CO2 effect on WUE (+ 73 to 82%) than did Matong (+54 to 65%). In drying soil, both cultivars had a similar increase in WUE at high CO2 (+60 to 68%).


1984 ◽  
Vol 20 (2) ◽  
pp. 135-149 ◽  
Author(s):  
G. R. Squire ◽  
P. J. Gregory ◽  
J. L. Monteith ◽  
M. B. Russell ◽  
Piara Singh

SUMMARYAt Hyderabad, India, stands of pearl millet were grown after the monsoon (a) with no irrigation after establishment and (b) with irrigation as needed to avoid stress. Increases of dry matter and leaf area were determined by regular harvesting. The interception of radiation by the foliage, uptake of water from the soil and stomatal conductance were monitored. Before anthesis at 42 days after sowing (DAS), the rate of dry matter production and the transpiration rate in the unirrigated stand were about 80% of the corresponding rates for the irrigated control, mainly because of a smaller stomatal conductance from 30 DAS. After anthesis, the unirrigated stand grew little and used only 10% of the water transpired by the control. This large difference was partitioned between loss of leaf area and smaller stomatal conductance in the ratio of approximately 2:1. Radiation intercepted by foliage in the irrigated stand produced 2.0 g of dry matter per MJ compared with 2.5 g MJ−1 for the same variety growing in the monsoon, a difference consistent with a smaller stomatal conductance in drier air.


1984 ◽  
Vol 20 (2) ◽  
pp. 135-149 ◽  
Author(s):  
G. R. Squire ◽  
P. J. Gregory ◽  
J. L. Monteith ◽  
M. B. Russell ◽  
Piara Singh

SUMMARYAt Hyderabad, India, stands of pearl millet were grown after the monsoon (a) with no irrigation after establishment and (b) with irrigation as needed to avoid stress. Increases of dry matter and leaf area were determined by regular harvesting. The interception of radiation by the foliage, uptake of water from the soil and stomatal conductance were monitored. Before anthesis at 42 days after sowing (DAS), the rate of dry matter production and the transpiration rate in the unirrigated stand were about 80% of the corresponding rates for the irrigated control, mainly because of a smaller stomatal conductance from 30 DAS. After anthesis, the unirrigated stand grew little and used only 10% of the water transpired by the control. This large difference was partitioned between loss of leaf area and smaller stomatal conductance in the ratio of approximately 2:1. Radiation intercepted by foliage in the irrigated stand produced 2.0 g of dry matter per MJ compared with 2.5 g MJ−1 for the same variety growing in the monsoon, a difference consistent with a smaller stomatal conductance in drier air.


1999 ◽  
Vol 3 (1) ◽  
pp. 55-69 ◽  
Author(s):  
B. Kruijt ◽  
C. Barton ◽  
A. Rey ◽  
P. G. Jarvis

Abstract. The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.


2015 ◽  
Vol 10 (4) ◽  
pp. 208 ◽  
Author(s):  
Lorenzo Barbanti ◽  
Ahmad Sher ◽  
Giuseppe Di Girolamo ◽  
Elio Cirillo ◽  
Muhammad Ansar

A better understanding of plant mechanisms in response to drought is a strong premise to achieving high yields while saving unnecessary water. This is especially true in the case of biomass crops for non-food uses (energy, fibre and forage), grown with limited water supply. In this frame, we investigated growth and physiological response of two genotypes of biomass sorghum (<em>Sorghum bicolor</em> (L.) Moench) to contrasting levels of soil moisture in a pot experiment carried out in a greenhouse. Two water regimes (high and low water, corresponding to 70% and 30% field capacity) were applied to JS-2002 and Trudan-8 sorghum genotypes, respectively bred for dry sub-tropical and mild temperate conditions. Two harvests were carried out at 73 and 105 days after seeding. Physiological traits (transpiration, photosynthesis and stomatal conductance) were assessed in four dates during growth. Leaf water potential, its components and relative water content were determined at the two harvests. Low watering curbed plant height and aboveground biomass to a similar extent (ca. 􀀀70%) in both genotypes. JS-2002 exhibited a higher proportion of belowground to aboveground biomass, <em>i.e</em>., a morphology better suited to withstand drought. Despite this, JS-2002 was more affected by low water in terms of physiology: during the growing season, the average ratio in transpiration, photosynthesis and stomatal conductance between droughty and well watered plants was, respectively, 0.82, 0.80 and 0.79 in JS-2002; 1.05, 1.08 and 1.03 in Trudan-8. Hence Trudan-8 evidenced a ca. 20% advantage in the three traits. In addition, Trudan-8 could better exploit abundant moisture (70% field capacity), increasing aboveground biomass and water use efficiency. In both genotypes, drought led to very low levels of leaf water potential and relative water content, still supporting photosynthesis. Hence, both morphological and physiological characteristics of sorghum were involved in plant adaptation to drought, in accordance with previous results. Conversely, the common assumption that genotypes best performing under wet conditions are less suited to face drought was contradicted by the results of the two genotypes in our experiment. This discloses a potential to be further exploited in programmes of biomass utilization for various end uses, although further evidence at greenhouse and field level is needed to corroborate this finding.


2020 ◽  
Vol 9 (5) ◽  
pp. e43952870
Author(s):  
Magnólia Martins Alves ◽  
Manoel Bandeira de Albuquerque ◽  
Renata Ranielly Pedroza Cruz ◽  
Mário Luiz Farias Cavalcanti

The availability of light is one of the factors that most limits the photosynthesis of juvenile trees in the understory of the forest. The study was carried out in the Mata do Pau-Ferro State Park, located in the city of Areia, PB. The objective of this study was to evaluate how gas exchanges occur in individuals of Psychotria colorata (Willd. Ex Roem & Schult.), Senna georgica Irwin & Barneby, Himatanthus phagedaenicus (Mart.) Woodson, Solanum swartzianum Roem. & Schult, Psychotria carthagenensis Jacq.e Psychotria hoffmannseggiana (Willd. ex Schult.) in the understory of a remnant of Mata Atlântica. The rate of photosynthesis (A), transpiration (E), stomatal conductance (Gs), internal CO2 concentration (Ci) leaf temperature-air temperature (°C), and internal carbon (Ci), instantaneous efficiency of water use (EUA) (A/E), Intrinsic efficiency of water use (EiUC) (A/Gs) and the intrinsic efficiency of carboxylation (ratio A/Ci). The rates of maximum photosynthesis (A), photosynthesis (E) and stomatal conductance (Gs) were shown to be influenced by the time of day, as there was no interference of external factors in the diurnal patterns of gas exchange, variations are due to endogenous factors, probably due to the circadian rhythm. The parameter of the gas exchange of sub-forest species responds differently, in the small variations in the luminosity levels of the forest understory


2021 ◽  
Author(s):  
Fasih Ullah Haider ◽  
Muhammad Farooq ◽  
Muhammad Naveed ◽  
Sardar Alam Cheema ◽  
Noor ul Ain ◽  
...  

Abstract The synergistic effects of biochar and microorganisms on the adsorption of Cd and on cereal plant physiology remained unclear. Therefore, this experiment was performed to evaluate the combined effects of biochar pyrolyzed from (maize-straw (BC1), cow-manure (BC2), and poultry-manure (BC3), and microorganisms including (T. harzianum L. and B. subtilis L.), to evaluate, how incorporation of biochar positively influences microorganisms growth and nutrients uptake in plant, and how it mitigates under various Cd-stress levels (0, 10, and 30ppm). Cd2 (30 ppm) had the highest reduction in the intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate, which were 22.36, 34.50, 40.45, 20.66, 29.07, and 22.41% respectively lower than control Cd0 (0 ppm). Sole application BC, resulted in enhanced intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate were recorded in BC2, which were 7.27, 20.54, 23.80, 5.96, 13.37, and 13.50% respectively greater as compared to control and decreased the Cd-concentration in root and shoot of maize by 34.07 and 32.53%, respectively as compared to control. Similarly, among sole microorganism’s inoculation, minimized the Cd-concentration in shoot, root, and soil by 23.77, 20.15, and 10.35% respectively than control. These results suggested that integrated application of cow manure biochar BC2 and inoculation of microorganisms MI3 as soil amendments had synergistic effects in improving the adsorption of nutrients and decreasing the Cd-uptake in maize, and enhancing the physiology of plant grown in Cd-polluted soils as opposed to using either biochar or inoculating microorganisms alone.


Sign in / Sign up

Export Citation Format

Share Document