Increased prostaglandin E generation and enhanced nitric oxide synthase activity in the non-insulin-dependent diabetic embryo during organogenesis

1998 ◽  
Vol 10 (2) ◽  
pp. 191 ◽  
Author(s):  
Alicia Jawerbaum ◽  
Elida T. Gonzalez ◽  
Virginia Novaro ◽  
Alicia Faletti ◽  
Debora Sinner ◽  
...  

Embryonic development, prostaglandin E (PGE) generation and nitric oxide synthase (NOS) activity during organogenesis were evaluated in an experimental rat model of non-insulin- dependent diabetes (NIDD) generated by neonatal administration of streptozotocin. Gross malformations were detected in 5% of NIDD embryos and these embryos were all non-viable; in the other 95%, growth was retarded but no congenital abnormalities were found. Control embryos were all alive and not malformed. The NIDD 11-day embryos secreted more PGE into the incubation medium than did controls. The NO donor SIN–1 increased PGE production in both control and NIDD embryos. A NOS inhibitor (L-NMMA) reduced PGE generation in both experimental groups, suggesting a modulatory role of NO on embryonic PGE production. Activity of NOS was higher in NIDD 11-day embryos than in controls. Treatment in vivo of control and NIDD rats (Days 7–11 of gestation) with a NOS inhibitor (L-NAME; 5 mg kg-1 i.p.) reduced embryonic PGE production and induced a higher resorption rate and an increase in neural-tube defects. The results suggest that NO modulates PGE generation in the organogenetic embryo. In the NIDD model, overproduction of NO is observed, this NO probably enhancing embryonic PGE production. The relationship between PGE generation and the appearance of congenital abnormalities is discussed.

2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


2005 ◽  
Vol 103 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Pascal C. Chiari ◽  
Martin W. Bienengraeber ◽  
Dorothee Weihrauch ◽  
John G. Krolikowski ◽  
Judy R. Kersten ◽  
...  

Background Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. Methods In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Results Isoflurane significantly (P &lt; 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. Conclusions The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed preconditioning by isoflurane in vivo.


1997 ◽  
Vol 322 (2) ◽  
pp. 609-613 ◽  
Author(s):  
Song Kyu PARK ◽  
Hsin Lee LIN ◽  
Sean MURPHY

Treatment of astroglial cells with interleukin 1β and interferon γ transcriptionally activates the nitric oxide synthase (NOS)-2 gene. The duration of mRNA expression is brief because of transcript instability. In addition, NO donors reduce the expression of NOS-2 mRNA dramatically by reducing the rate of transcription. In this study we observed that the NO donor, spermine NONOate did not inhibit the activation and translocation of NF-κB, a key transcription factor in the induction of NOS-2, but inhibited formation of the NF-κB–DNA complex. This effect was reversed by methaemoglobin (acting as an NO trap) and by the reducing agent dithiothreitol. Formation of the interferon-regulatory factor–DNA complex was unaffected by NO. These results suggest that NO can modulate its own production by interfering with NF-κB interaction with the promoter region of the NOS gene, a negative feedback effect that may be important for limiting NO production in vivo.


1999 ◽  
Vol 163 (1) ◽  
pp. 39-48 ◽  
Author(s):  
B Akesson ◽  
R Henningsson ◽  
A Salehi ◽  
I Lundquist

We have studied, by a combined in vitro and in vivo approach, the relation between the inhibitory action of N(G)-nitro-l-arginine methyl ester (L-NAME), a selective inhibitor of nitric oxide synthase (NOS), on the activity of islet constitutive NOS (cNOS) and glucose regulation of islet hormone release in mice. The cNOS activity in islets incubated in vitro at 20 mM glucose was not appreciably affected by 0.05 or 0.5 mM L-NAME, but was greatly suppressed (-60%) by 5 mM L-NAME. Similarly, glucose-stimulated insulin release was unaffected by the lower concentrations of L-NAME but greatly enhanced in the presence of 5 mM of the NOS inhibitor. In incubated islets inhibition of cNOS activity resulted in a modestly enhanced insulin release in the absence of glucose, did not display any effect at physiological or subphysiological glucose concentrations, but resulted in a markedly potentiated insulin release at hyperglycaemic glucose concentrations. In the absence of glucose, glucagon secretion was suppressed by L-NAME. The dynamics of glucose-induced insulin release and (45)Ca(2+) efflux from perifused islets revealed that L-NAME caused an immediate potentiation of insulin release, and a slight increase in (45)Ca(2+) efflux. In islets depolarized with 30 mM K(+) in the presence of the K(+)(ATP) channel opener, diazoxide, L-NAME still greatly potentiated glucose-induced insulin release. Finally, an i.v. injection of glucose to mice pretreated with L-NAME was followed by a markedly potentiated insulin response, and an improved glucose tolerance. In accordance, islets isolated directly ex vivo after L-NAME injection displayed a markedly reduced cNOS activity. In conclusion, we have shown here, for the first time, that biochemically verified suppression of islet cNOS activity, induced by the NOS inhibitor L-NAME, is accompanied by a marked potentiation of glucose-stimulated insulin release both in vitro and in vivo. The major action of NO to inhibit glucose-induced insulin release is probably not primarily linked to changes in Ca(2+) fluxes and is exerted mainly independently of membrane depolarization events.


2011 ◽  
Vol 56 (No. 6) ◽  
pp. 284-291 ◽  
Author(s):  
Heidari Amale M ◽  
Zare Shahne A ◽  
A. Abavisani ◽  
S. Nasrollahi

Nitric oxide (NO) is a biological signaling molecule that plays a crucial role in oocyte maturation of mammalians. It is generated by the nitric oxide synthase (NOS) enzyme from l-arginine. Although the effect of NO has been shown in oocyte maturation of some species, there is no report about its effect on the in vitro maturation of sheep oocyte. So, this study aimed to investigate the importance of NO/NOS system in the in vitro maturation of ovine oocytes. Different concentrations of L-NAME (a NOS inhibitor) (0.1, 1 and 10mM) were added to maturation medium to evaluate the effect of inhibiting NOS on cumulus expansion and meiotic resumption of sheep oocytes. After 26 h culture, low and medium concentrations of L-NAME (0.1 and 1mM) had no significant effect on cumulus expansion, however, its higher concentration (10mM) decreased percentage of oocytes with total cumulus expansion as compared to control (P &lt; 0.05). The extrusion of the first polar body was also suppressed in a dose-dependent manner, so that the addition of 10mM L-NAME to maturation medium significantly stopped oocytes in GV stage (P &lt; 0.05). Moreover, to confirm the results and to evaluate if this effect is reversible, 0.1mM sodium nitroprusside (SNP, a NO donor) was added only to the maturation medium which had the highest concentration of L-NAME (10mM). The concomitant addition of NOS inhibitor with NO donor reversed the inhibitory effect of L-NAME on cumulus expansion and meiotic maturation. These results indicated that NO/NOS system is involved in the maturation of sheep oocytes.


2010 ◽  
Vol 298 (3) ◽  
pp. C665-C678 ◽  
Author(s):  
Yixin Tang ◽  
Elizabeth A. Scheef ◽  
Zafer Gurel ◽  
Christine M. Sorenson ◽  
Colin R. Jefcoate ◽  
...  

We have recently shown that deletion of constitutively expressed CYP1B1 is associated with attenuation of retinal endothelial cell (EC) capillary morphogenesis (CM) in vitro and angiogenesis in vivo. This was largely caused by increased intracellular oxidative stress and increased production of thrombospondin-2, an endogenous inhibitor of angiogenesis. Here, we demonstrate that endothelium nitric oxide synthase (eNOS) expression is dramatically decreased in the ECs prepared from retina, lung, heart, and aorta of CYP1B1-deficient (CYP1B1−/−) mice compared with wild-type (CYP1B1+/+) mice. The eNOS expression was also decreased in retinal vasculature of CYP1B1−/− mice. Inhibition of eNOS activity in cultured CYP1B1+/+ retinal ECs blocked CM and was concomitant with increased oxidative stress, like in CYP1B1−/− retinal ECs. In addition, expression of eNOS in CYP1B1−/− retinal ECs or their incubation with a nitric oxide (NO) donor enhanced NO levels, lowered oxidative stress, and improved cell migration and CM. Inhibition of CYP1B1 activity in the CYP1B1+/+ retinal ECs resulted in reduced NO levels and attenuation of CM. In contrast, expression of CYP1B1 increased NO levels and enhanced CM of CYP1B1−/− retinal ECs. Furthermore, attenuation of CYP1B1 expression with small interfering RNA proportionally lowered eNOS expression and NO levels in wild-type cells. Together, our results link CYP1B1 metabolism in retinal ECs with sustained eNOS activity and NO synthesis and/or bioavailability and low oxidative stress and thrombospondin-2 expression. Thus CYP1B1 and eNOS cooperate in different ways to lower oxidative stress and thereby to promote CM in vitro and angiogenesis in vivo.


2018 ◽  
Author(s):  
Cao Xiaochuang ◽  
Zhu Chunquan ◽  
Zhong Chu ◽  
Zhang Junhua ◽  
Zhu Lianfeng ◽  
...  

AbstractAmmonium (NH4+) can enhance rice drought tolerance in comparison to nitrate (NO3-). The mechanism underpinning this relationship was investigated based on the time-dependent nitric oxide (NO) production and its protective role in oxidative stress of NH4+-/NO3--supplied rice under drought. An early burst of NO was induced by drought 3h after root NH4+ treatment but not after NO3- treatment. Root oxidative damage induced by drought was significantly higher in NO3- than in NH4+-treatment due to its reactive oxygen species accumulation. Inducing NO production by applying NO donor 3h after NO3- treatment alleviated the oxidative damage, while inhibiting the early NO burst increased root oxidative damage in NH4+ treatment. Application of nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) completely suppressed NO synthesis in roots 3h after NH4+ treatment and aggravated drought-induced oxidative damage, indicating the aggravation of oxidative damage might have resulted from changes in NOS-mediated early NO burst. Drought also increased root antioxidant enzymes activities, which were further induced by NO donor but repressed by NO scavenger and NOS inhibitor in NH4+-treated roots. Thus, the NOS-mediated early NO burst plays an important role in alleviating oxidative damage induced by drought by enhancing antioxidant defenses in NH4+-supplied rice roots.HighlightNOS-mediated early NO burst plays an important role in alleviating oxidative damage induced by water stress, by enhancing the antioxidant defenses in roots supplemented with NH4+


1994 ◽  
Vol 267 (1) ◽  
pp. R228-R235 ◽  
Author(s):  
C. Iadecola ◽  
F. Zhang ◽  
X. Xu

We sought to determine whether the attenuation of the hypercapnic cerebrovasodilation associated with inhibition of nitric oxide synthase (NOS) can be reversed by exogenous NO. Rats were anesthetized (halothane) and ventilated. Neocortical cerebral blood flow (CBF) was monitored by a laser-Doppler probe. The NOS inhibitor N omega-nitro-L-arginine methyl ester (L-NAME; 40 mg/kg iv) reduced resting CBF [-36 +/- 5% (SE); P < 0.01, analysis of variance] and attenuated the increase in CBF elicited by hypercapnia (partial pressure of CO2 = 50-60 mmHg) by 66% (P < 0.01). L-NAME reduced forebrain NOS catalytic activity by 64 +/- 3% (n = 10; P < 0.001). After L-NAME, intracarotid infusion of the NO donor 3-morpholinosydnonimine (SIN-1; n = 6) increased resting CBF and reestablished the CBF increase elicited by hypercapnia (P > 0.05 from before L-NAME). Similarly, infusion of the guanosine 3',5'-cyclic monophosphate (cGMP) analogue 8-bromo-cGMP (n = 6) reversed the L-NAME-induced attenuation of the hypercapnic cerebrovasodilation. The NO-independent vasodilator papaverine (n = 6) increased resting CBF but did not reverse the attenuation of the CO2 response. SIN-1 did not affect the attenuation of the CO2 response induced by indomethacin (n = 6). The observation that NO donors reverse the L-NAME-induced attenuation of the CO2 response suggests that a basal level of NO is required for the vasodilation to occur. The findings are consistent with the hypothesis that NO is not the final mediator of smooth muscle relaxation in hypercapnia.(ABSTRACT TRUNCATED AT 250 WORDS)


Reproduction ◽  
2002 ◽  
pp. 663-669 ◽  
Author(s):  
A Hurwitz ◽  
Z Finci-Yeheskel ◽  
A Milwidsky ◽  
M Mayer

This study explores interactions between the nitric oxide synthase (NOS) and the cyclooxygenase (COX) pathways in the regulation of progesterone production in early corpus luteum cells of rats. Nitric oxide (NO), prostaglandin E (PGE) and progesterone production was analysed in luteal cells of the rat corpus luteum exposed to inhibitors of non-specific NOS, inhibitors of inducible NOS (iNOS) and inhibitors of COX. Equine chorionic gonadotrophin (eCG)/hCG-primed rat corpus luteum cells produced NO, PGE and progesterone in a linear manner during 66 h of culture. Exposure of the cells to the non-specific NOS inhibitor, N(omega)-nitro-L-arginine (0.15 mmol l(-1)) for 48 h reduced NO, PGE and progesterone production to 21, 32 and 60% of that of the controls, respectively (P < 0.05 to P < 0.01). Another non-specific NOS inhibitor, N(omega)-methyl-L-arginine, produced similar inhibitions. Exposure of the cultured cells to S-ethylisothiourea (1 mmol l(-1)), a selective inhibitor of iNOS, suppressed the production of NO by 63%, PGE by 69% and progesterone by 48%. These findings indicate that production of PGE is regulated partly by iNOS, and that progesterone is probably regulated indirectly by the secondary changes in PGE. The addition of arachidonic acid to N(omega)-methyl-L-arginine-treated cells resulted in a significant increase in PGE and progesterone production (273 and 186%, respectively) without stimulating NO production. In contrast to the regulation exerted by the NO system on COX activity, the COX system does not modulate NO production in this model. This notion stems from the observation that the COX inhibitors acetylsalicylic acid (5 mmol l(-1)) and indomethacin (5 micromol l(-1)) suppressed PGE by 86 and 89%, respectively, and progesterone by 34 and 57%, respectively, but failed to inhibit NO production. The results from the present study indicate that iNOS-mediated NO production is involved in stimulating PGE synthesis in rat luteal cells, which may upregulate progesterone production.


2006 ◽  
Vol 290 (4) ◽  
pp. F873-F879 ◽  
Author(s):  
Ming-Guo Feng ◽  
L. Gabriel Navar

Previous studies have shown that L-type Ca2+ channel (LCC) blockers primarily dilate resting and ANG II-constricted afferent arterioles (AA), but do not influence either resting or ANG II-constricted efferent arterioles (EA). In contrast, blockade of T-type Ca2+ channels (TCC) dilate EA and prevent ANG II-mediated efferent constriction. The present study determined the role of LCC and TCC in mediating the AA and EA constriction following inhibition of nitric oxide synthase (NOS) and tested the hypothesis that inhibition of NOS increases the influence of LCC on EA. With the use of an isolated blood-perfused rat juxtamedullary nephron preparation, single AA or EA were visualized and superfused with a NOS inhibitor, N-nitro-l-arginine (l-NNA), with or without concomitant treatment with an LCC blocker, diltiazem, or a TCC blocker, pimozide. In response to l-NNA (1, 10, and 100 μmol/l), AA and EA diameters decreased significantly by 6.0 ± 0.3, 13.7 ± 1.7, and 19.9 ± 1.4%, and by 6.2 ± 0.5, 13.3 ± 1.1, and 19.0 ± 1.9%, respectively. During TCC blockade with pimozide (10 μmol/l), l-NNA did not significantly constrict afferent (0.9 ± 0.6, 1.5 ± 0.5, and 1.7 ± 0.5%) or efferent (0.4 ± 0.1, 2.1 ± 0.7, and 2.5 ± 1.0%) arterioles. In contrast to the responses with other vasoconstictors, the l-NNA-induced constriction of EA, as well as AA, was reversed by diltiazem (10 μmol/l). The effects were overlapping as pimozide superimposed on diltiazem did not elicit further dilation. When the effects of l-NNA were reversed by superfusion with an NO donor, SNAP (10 μmol/l), diltiazem did not cause significant efferent dilation. As a further test of LCC activity, 55 mmol/l KCl, which depolarizes and constricts AA, caused only a modest constriction in resting EA (8.7 ± 1.3%), but a stronger EA constriction during concurrent treatment with l-NNA (23.8 ± 4.8%). In contrast, norepinephrine caused similar constrictions in both l-NNA-treated and nontreated arterioles. These results provide evidence that NO inhibits LCC and TCC activity and that NOS inhibition-mediated arteriolar constriction involves activation of LCC and TCC in both AA and EA. The difference in responses to high KCl between resting and l-NNA-constricted EA and the ability of diltiazem to block EA constriction caused by l-NNA contrasts with the lack of efferent effects in resting and SNAP-treated l-NNA-preconstricted arterioles and during ANG II-mediated vasoconstriction, suggesting a recruitment of LCC in EA when NOS is inhibited. These data help explain how endothelial dysfunction associated with hypertension may lead to enhanced activity of LCC in postglomerular arterioles and increased postglomerular resistance.


Sign in / Sign up

Export Citation Format

Share Document