From fibroblasts and stem cells: implications for cell therapies and somatic cloning

2005 ◽  
Vol 17 (2) ◽  
pp. 125 ◽  
Author(s):  
Wilfried A. Kues ◽  
Joseph W. Carnwath ◽  
Heiner Niemann

Pluripotent embryonic stem cells (ESCs) from the inner cell mass of early murine and human embryos exhibit extensive self-renewal in culture and maintain their ability to differentiate into all cell lineages. These features make ESCs a suitable candidate for cell-replacement therapy. However, the use of early embryos has provoked considerable public debate based on ethical considerations. From this standpoint, stem cells derived from adult tissues are a more easily accepted alternative. Recent results suggest that adult stem cells have a broader range of potency than imagined initially. Although some claims have been called into question by the discovery that fusion between the stem cells and differentiated cells can occur spontaneously, in other cases somatic stem cells have been induced to commit to various lineages by the extra- or intracellular environment. Recent data from our laboratory suggest that changes in culture conditions can expand a subpopulation of cells with a pluripotent phenotype from primary fibroblast cultures. The present paper critically reviews recent data on the potency of somatic stem cells, methods to modify the potency of somatic cells and implications for cell-based therapies.

2021 ◽  
pp. 21-37
Author(s):  
Jonathan Slack

‘Embryonic stem cells’ focuses on embryonic stem (ES) cells, which are grown in tissue culture from the inner cell mass of a mammalian blastocyst-stage embryo. Human ES cells offer a potential route to making the kinds of cells needed for cell therapy. ES cells were originally prepared from mouse embryos. Although somewhat different, cells grown from inner cell masses of human embryos share many properties with mouse ES cells, such as being able to grow without limit and to generate differentiated cell types. Mouse ES cells have so far been of greater practical importance than those of humans because they have enabled a substantial research industry based on the creation of genetically modified mice.


2019 ◽  
Vol 1 (1) ◽  

Stem cells have the ability to go through various cell divisions and also maintain undifferentiated state. Stem cells are Embryonic (Pluripotent) and adult stem cells. Pluripotent stem cells give rise to all tissues such as ectoderm, mesoderm and endoderm. Embryonic stem cells isolated from inner cell mass of embryo blastocyst. Adult stem cells are also undifferentiated cells present in adult organisms and repair the tissue when damaged occurs but number in less. Adult stem cells are present in bone marrow, adipose tissue, blood and juvenile state umbilical cord and tissue of specific origin like liver, heart, intestine and neural tissue. Embryonic stem cells from blastocyst have the ethical problems and tumorogenecity. These can be identified by flow cytometry. There are wide range of stem cell markers which are useful in identifying them. Most of the pluripotent cell markers are common with tumor cell markers which throws a challenge for certainty.


Biology Open ◽  
2021 ◽  
Author(s):  
Sapna Chhabra ◽  
Aryeh Warmflash

Human embryonic stem cells (hESCs) possess an immense potential to generate clinically relevant cell types and unveil mechanisms underlying early human development. However, using hESCs for discovery or translation requires accurately identifying differentiated cell types through comparison with their in vivo counterparts. Here, we set out to determine the identity of much debated BMP-treated hESCs by comparing their transcriptome to recently published single cell transcriptomic data from early human embryos (Xiang et al., 2019). Our analyses reveal several discrepancies in the published human embryo dataset, including misclassification of putative amnion, intermediate and inner cell mass cells. These misclassifications primarily resulted from similarities in pseudogene expression, highlighting the need to carefully consider gene lists when making comparisons between cell types. In the absence of a relevant human dataset, we utilized the recently published single cell transcriptome of the early post implantation monkey embryo to discern the identity of BMP-treated hESCs. Our results suggest that BMP-treated hESCs are transcriptionally more similar to amnion cells than trophectoderm cells in the monkey embryo. Together with prior studies, this result indicates that hESCs possess a unique ability to form mature trophectoderm subtypes via an amnion-like transcriptional state.


2021 ◽  
Author(s):  
Sapna Chhabra ◽  
Aryeh Warmflash

AbstractHuman embryonic stem cells (hESCs) possess an immense potential to generate clinically relevant cell types and unveil mechanisms underlying early human development. However, using hESCs for discovery or translation requires accurately identifying differentiated cell types through comparison with their in vivo counterparts. Here, we set out to determine the identity of much debated BMP-treated hESCs by comparing their transcriptome to the recently published single cell transcriptomes of early human embryos in the study Xiang et al 2019. Our analyses reveal several discrepancies in the published human embryo dataset, including misclassification of putative amnion, intermediate and inner cell mass cells. These misclassifications primarily resulted from similarities in pseudogene expression, highlighting the need to carefully consider gene lists when making comparisons between cell types. In the absence of a relevant human dataset, we utilized the recently published single cell transcriptome of the early post implantation monkey embryo to discern the identity of BMP-treated hESCs. Our results suggest that BMP-treated hESCs are transcriptionally more similar to amnion cells than trophectoderm cells in the monkey embryo. Together with prior studies, this result indicates that hESCs possess a unique ability to form mature trophectoderm subtypes via an amnion-like transcriptional state.


2007 ◽  
Vol 2 (4) ◽  
pp. 449-480
Author(s):  
Enrique Roche ◽  
Miriam Ramírez ◽  
Carmen Ramírez-Castillejo ◽  
Guadalupe Gómez-Mauricio ◽  
Jesús Usón

AbstractStem cells have been considered as a useful tool in Regenerative Medicine due to two main properties: high rate of self-renewal, and their potential to differentiate into all cell types present in the adult organism. Depending on their origin, these cells can be grouped into embryonic or adult stem cells. Embryonic stem cells are obtained from the inner cell mass of blastocyst, which appears during embryonic day 6 of human development. Adult stem cells are present within various tissues of the organism and are responsible for their turnover and repair. In this sense, these cells open new therapeutic possibilities to treat degenerative diseases such as type 1 diabetes. This pathology is caused by the autoimmune destruction of pancreatic β-cells, resulting in the lack of insulin production. Insulin injection, however, cannot mimic β-cell function, thus causing the development of important complications. The possibility of obtaining β-cell surrogates from either embryonic or adult stem cells to restore insulin secretion will be discussed in this review.


2013 ◽  
Vol 25 (1) ◽  
pp. 94 ◽  
Author(s):  
Vanessa Jane Hall

Understanding the cell signalling events that govern cell renewal in porcine pluripotent cells may help improve culture conditions and allow for establishment of bona fide porcine embryonic stem cells (pESC) and stable porcine induced pluripotent stem cells (piPSC). This review investigates cell signalling in the porcine preimplantation embryo containing either the inner cell mass or epiblast, with particular emphasis on fibroblast growth factor, SMAD, WNT and Janus tyrosine kinases/signal transducers and activators of transcription signalling. It is clear that key differences exist in the cell signalling events that govern pluripotency in this species compared with similar embryonic stages in mouse and human. The fact that bona fide pESC have still not been produced and that piPSC cannot survive in culture following the silencing or downregulation of the reprogramming transgenes suggest that culture conditions are not optimal. Unravelling the factor/s that regulate pluripotency in porcine embryos will pave the way for future establishment of stable pluripotent stem cell lines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Delia Alba Soto ◽  
Micaela Navarro ◽  
Canbin Zheng ◽  
Michelle Margaret Halstead ◽  
Chuan Zhou ◽  
...  

AbstractBovine embryonic stem cells (bESCs) extend the lifespan of the transient pluripotent bovine inner cell mass in vitro. After years of research, derivation of stable bESCs was only recently reported. Although successful, bESC culture relies on complex culture conditions that require a custom-made base medium and mouse embryonic fibroblasts (MEF) feeders, limiting the widespread use of bESCs. We report here simplified bESC culture conditions based on replacing custom base medium with a commercially available alternative and eliminating the need for MEF feeders by using a chemically-defined substrate. bESC lines were cultured and derived using a base medium consisting of N2B27 supplements and 1% BSA (NBFR-bESCs). Newly derived bESC lines were easy to establish, simple to propagate and stable after long-term culture. These cells expressed pluripotency markers and actively proliferated for more than 35 passages while maintaining normal karyotype and the ability to differentiate into derivatives of all three germ lineages in embryoid bodies and teratomas. In addition, NBFR-bESCs grew for multiple passages in a feeder-free culture system based on vitronectin and Activin A medium supplementation while maintaining pluripotency. Simplified conditions will facilitate the use of bESCs for gene editing applications and pluripotency and lineage commitment studies.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Lucia Marucci

Mouse embryonic stem cells (mESCs), derived from the inner cell mass of the blastocyst, are pluripotent stem cells having self-renewal capability and the potential of differentiating into every cell type under the appropriate culture conditions. An increasing number of reports have been published to uncover the molecular mechanisms that orchestrate pluripotency and cell fate specification using combined computational and experimental methodologies. Here, we review recent systems biology approaches to describe the causes and functions of gene expression heterogeneity and complex temporal dynamics of pluripotency markers in mESCs under uniform culture conditions. In particular, we focus on the dynamics of Nanog, a key regulator of the core pluripotency network and of mESC fate. We summarize the strengths and limitations of different experimental and modeling approaches and discuss how various strategies could be used.


2017 ◽  
Vol 71 (0) ◽  
pp. 0-0 ◽  
Author(s):  
Ilona Szabłowska-Gadomska ◽  
Leonora Bużańska ◽  
Maciej Małecki

Stem cells due to their unique properties of self-renewal and differentiation play a potential role in the process of damaged tissue repair. Isolated from the inner cell mass of the blastocyst have pluripotential properties and are called embryonic stem cells (ESC). Pluripotential stem cells can be also generated from the differentiated cells by the process of reprogramming and are called induced pluripotent stem cells (iPSC). Stem cells isolated from tissues (somatic or adult stem cells) are more restricted in their differentiation potential and referred as multipotent. The rapid rise in number of clinical trials using somatic stem cells is due to their proved in basic and preclinical studies therapeutic safety and paracrine properties to modulate microenvironment. Increased translation to the clinic of studies using adult stem cells provide hope for patients with diseases for which traditional medicine is powerless .or ineffective. On the other hand progress in iPSC technology allows to derive disease models and personalize future clinical diagnosis and treatment. This paper will focus on characteristics of stem cells, potential application in regenerative medicine, and the current legal status of cell therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Kimia Hosseini ◽  
Emilia Lekholm ◽  
Aikeremu Ahemaiti ◽  
Robert Fredriksson

Human embryonic stem cells (hESCs) are pluripotent cells, capable of differentiation into different cellular lineages given the opportunity. Derived from the inner cell mass of blastocysts in early embryonic development, the cell self-renewal ability makes them a great tool for regenerative medicine, and there are different protocols available for maintaining hESCs in their undifferentiated state. In addition, protocols for differentiation into functional human neural stem cells (hNSCs), which have the potential for further differentiation into various neural cell types, are available. However, many protocols are time-consuming and complex and do not always fit for purpose. In this study, we carefully combined, optimized, and developed protocols for differentiation of hESCs into adherent monolayer hNSCs over a short period of time, with the possibility of both expansion and freezing. Moreover, the method details further differentiation into neurons, cholinergic neurons, and glial cells in a simple, single step by step protocol. We performed immunocytochemistry, qPCR, and electrophysiology to examine the expression profile and characteristics of the cells to verify cell lineage. Using presented protocols, the creation of neuronal cultures, cholinergic neurons, and a mixed culture of astrocytes and oligodendrocytes can be completed within a three-week time period.


Sign in / Sign up

Export Citation Format

Share Document