Embryonic stem cells in companion animals (horses, dogs and cats): present status and future prospects

2007 ◽  
Vol 19 (6) ◽  
pp. 740 ◽  
Author(s):  
R. Tayfur Tecirlioglu ◽  
Alan O. Trounson

Reproductive technologies have made impressive advances since the 1950s owing to the development of new and innovative technologies. Most of these advances were driven largely by commercial opportunities and the potential improvement of farm livestock production and human health. Companion animals live long and healthy lives and the greatest expense for pet owners are services related to veterinary care and healthcare products. The recent development of embryonic stem cell and nuclear transfer technology in primates and mice has enabled the production of individual specific embryonic stem cell lines in a number of species for potential cell-replacement therapy. Stem cell technology is a fast-developing area in companion animals because many of the diseases and musculoskeletal injuries of cats, dogs and horses are similar to those in humans. Nuclear transfer-derived stem cells may also be selected and directed into differentiation pathways leading to the production of specific cell types, tissues and, eventually, even organs for research and transplantaton. Furthermore, investigations into the treatment of inherited or acquired pathologies have been performed mainly in mice. However, mouse models do not always faithfully represent the human disease. Naturally occurring diseases in companion animals can be more ideal as disease models of human genetic and acquired diseases and could help to define the potential therapeutic efficiency and safety of stem cell therapies. In the present review, we focus on the economic implications of companion animals in society, as well as recent biotechnological progress that has been made in horse, dog and cat embryonic stem cell derivation.

Stem Cells ◽  
2008 ◽  
Vol 26 (8) ◽  
pp. 2131-2141 ◽  
Author(s):  
Dengke K. Ma ◽  
Cheng-Hsuan J. Chiang ◽  
Karthikeyan Ponnusamy ◽  
Guo-li Ming ◽  
Hongjun Song

2012 ◽  
Vol 287 (44) ◽  
pp. 36777-36791 ◽  
Author(s):  
Hiroaki Fujimori ◽  
Mima Shikanai ◽  
Hirobumi Teraoka ◽  
Mitsuko Masutani ◽  
Ken-ichi Yoshioka

2011 ◽  
Vol 04 (03) ◽  
pp. 279-288 ◽  
Author(s):  
HE N. XU ◽  
RUSSELL C. ADDIS ◽  
DAVIDA F. GOINGS ◽  
SHOKO NIOKA ◽  
BRITTON CHANCE ◽  
...  

Redox state mediates embryonic stem cell (ESC) differentiation and thus offers an important complementary approach to understanding the pluripotency of stem cells. NADH redox ratio (NADH/(Fp + NADH)), where NADH is the reduced form of nicotinamide adenine dinucleotide and Fp is the oxidized flavoproteins, has been established as a sensitive indicator of mitochondrial redox state. In this paper, we report our redox imaging data on the mitochondrial redox state of mouse ESC (mESC) colonies and the implications thereof. The low-temperature NADH/Fp redox scanner was employed to image mESC colonies grown on a feeder layer of gamma-irradiated mouse embryonic fibroblasts (MEFs) on glass cover slips. The result showed significant heterogeneity in the mitochondrial redox state within individual mESC colonies (size: ~200–440 μm), exhibiting a core with a more reduced state than the periphery. This more reduced state positively correlates with the expression pattern of Oct4, a well-established marker of pluripotency. Our observation is the first to show the heterogeneity in the mitochondrial redox state within a mESC colony, suggesting that mitochondrial redox state should be further investigated as a potential new biomarker for the stemness of embryonic stem cells.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Gerelchimeg Bou ◽  
Shimeng Guo ◽  
Jia Guo ◽  
Zhuang Chai ◽  
Jianchao Zhao ◽  
...  

Summary The efficiency of establishing pig pluripotent embryonic stem cell clones from blastocysts is still low. The transcription factor Nanog plays an important role in maintaining the pluripotency of mouse and human embryonic stem cells. Adequate activation of Nanog has been reported to increase the efficiency of establishing mouse embryonic stem cells from 3.5 day embryos. In mouse, Nanog starts to be strongly expressed as early as the morula stage, whereas in porcine NANOG starts to be strongly expressed by the late blastocyst stage. Therefore, here we investigated both the effect of expressing NANOG on porcine embryos early from the morula stage and the efficiency of porcine pluripotent embryonic stem cell clone formation. Compared with intact porcine embryos, NANOG overexpression induced a lower blastocyst rate, and did not show any advantages for embryo development and pluripotent embryonic stem cell line formation. These results indicated that, although NANOG is important pluripotent factor, NANOG overexpression is unnecessary for the initial formation of porcine pluripotent embryonic stem cell clones in vitro.


Author(s):  
Alexandra Huidu

Embrionic stem cells research, as opposed to hematopoietic stem cells research, has always stirred up many controversies of ethical nature that have projected their effects in the specialized doctrine of the domain of medical bioethics and law. Some of these controversies have been transposed at the legislative level (both by international normative acts and by the national laws of the states) while others are not yet de object of consensus. All that is not transposed by law remains in the exclusive sphere of ethics, so the ethical discussion in embryonic stem cell research is not only relevant for today's modern medicine but also of the utmost importance for a category of specialists in various research fields.


Sign in / Sign up

Export Citation Format

Share Document