Cryotolerance of porcine in vitro-produced blastocysts relies on blastocyst stage and length of in vitro culture prior to vitrification

2016 ◽  
Vol 28 (7) ◽  
pp. 886 ◽  
Author(s):  
Roser Morató ◽  
Míriam Castillo-Martín ◽  
Marc Yeste ◽  
Sergi Bonet

The aim of our study was to assess whether the cryotolerance of in vitro-produced embryos could be influenced by the length of in vitro culture and size of blastocoel cavity before vitrification, using the pig as a model. For this purpose we analysed the cryoresistance and apoptosis rate of blastocysts at different stages of development as derived on Day 5 and 6 of in vitro culture. Blastocysts were subsequently vitrified, warmed and cultured for 24 h. Re-expansion rates were recorded at 3 and 24 h and total cell number and apoptotic cells were determined at 24 h. Day-6 blastocysts showed the highest rates of survival after warming, which indicates higher quality compared with Day-5 blastocysts. Higher re-expansion rates were observed for expanded blastocysts and those in the process of hatching when compared with early blastocysts. Total cell number and apoptotic cells were affected by blastocyst stage, vitrification–warming procedures and length of in vitro culture, as expanding and hatching–hatched blastocysts from Day 6 presented higher percentages of apoptotic cells than fresh blastocysts and blastocysts vitrified at Day 5. Our findings suggest that the cryotop vitrification method is useful for the cryopreservation of porcine blastocysts presenting a high degree of expansion, particularly when vitrification is performed after 6 days of in vitro culture. Furthermore, these results show that faster embryo development underlies higher blastocyst cryotolerance and provide evidence that blastocoel cavity expansion before vitrification is a reliable index of in vitro-produced embryo quality and developmental potential.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-328
Author(s):  
Galina Singina

Abstract The oocyte quality acquired during in vitro maturation (IVM) are the main limitative factors affecting the embryo production. The aim of the present research was to study effects of fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1) during IVM of bovine oocytes on their developmental potential after parthenogenetic activation. Bovine cumulus-oocyte complexes (COC; n = 1176) were cultured for 22h in either standard maturation medium (TCM-199 supplemented with 10% fetal calf serum (FCS), 0.2 mM sodium pyruvate, 10 μg/ml FSH and 10 μg/ml LH; Control) or maturation medium supplemented with different concentrations (5–160 ng/ml) of FGF2 and IGF1. After IVM, matured oocytes activated by sequential treatment with ionomycin followed by DMAP and cyclohexamide and then cultured up to the blastocyst stage. The obtained blastocysts were fixed, and the total cell number and the level of apoptosis were determined using DAPI and TUNEL staining. The data from 4 replicates (77–91 oocytes per treatment) were analyzed by ANOVA. Cleavage rates of activated oocytes did not differ between groups and ranged from 63.7 to 68.1%. The addition of 10, 20 and 40 ng/ml of FGF2 to the IVM medium led to an increase in the yield of blastocysts [from 19.6±1.8% (Control) to 35.2±3.4, 29.8±1.9 and 31.1±2.1%, respectively (P<0.05)] and in the total cell number in embryos that developed to the blastocyst stage (P<0.05). Meanwhile, the blastocyst yield and the total cell number in blastocysts in the IGF1-treated groups were similar to that in the control group. No effects of both growth factors on the proportion of apoptotic nuclei in blastocysts (5.3–7.1%) were observed. Thus, FGF2 (but not IGF1) are able to maintain competence for parthenogenetic development of bovine COC during their maturation invitro. Supported by RFBR (18-29-07089) and the Ministry of Science and Higher Education of Russia.


2010 ◽  
Vol 22 (1) ◽  
pp. 232
Author(s):  
B. Gajda ◽  
I. Grad ◽  
E. van der Tuin ◽  
Z. Smorag

Hyaluronan (HA) is a high molecular weight polysaccharide found in the mammalian follicular, oviduct, and uterine fluids. When HA is added in maturation and culture media, it improves the developmental potential of bovine (Stojkovic M et al. 2002 Reproduction 124, 141-153; Palasz AT et al. 2008 Zygote 16, 39-47), and porcine oocytes (Sato E et al. 1990 Mol. Reprod. Dev. 26, 391-397) and embryos (Miyano T et al. 1994 Theriogenology 41, 1299-1305). Physiological concentration of HA in follicular, oviductal, and uterine fluids of pigs range from 0.04 to 1.83 mg mL-1 (Kano K et al. 1998 Biol. Reprod. 58, 1226-1232). The aim of the present study was to investigate the effect of different concentrations of HA on the development and quality of cultured porcine embryos. Zygotes from superovulated pigs were cultured in vitro in NCSU-23 medium supplemented with BSA and 0 mg mL-1 (control group), 0.25 mg mL-1 (Exp. Group 1), and 0.5 mg mL-1 (Exp. Group 2) of HA (Animal Pharma BV). Experiments were replicated 3 times with 30 to 40 embryos per each treatment group. Embryos were cultured up to the blastocyst stage at 39°C in an atmosphere of 5% CO2 in air, in 4-well plastic dishes, which contained approximately 0.8 mL of the NCSU-23 medium. Embryo quality criteria were cleavage (on Day 2 after in vitro culture), morula (on Day 4) and blastocyst (on Days 6 to 8) rates, total cell number per blastocyst, and degree of apoptosis (on Day 7) assessed by TUNEL method. Results were analyzed by ANOVA test. There was no difference in percentage of cleaved embryos between control and treated Group 1 and 2.The proportion of embryos developed to the morula and blastocyst stage was 80.0 and 60.0% for Group 1 (0.25 mg of HA), 73.7 and 44.7% for Group 2 (0.5 mg of HA), and 73.4 and 46.7% for control, respectively (difference NS). Supplementation with HA did not increase the cell number of the blastocysts but significantly reduced number of apoptotic nuclei from 2.0 for control to 0.7 (P < 0.01) and 0.6 (P < 0.01) for Group 1 and 2, respectively, and apoptotic index from 9.70 for control to 3.01 (P < 0.05) and 1.95 (P < 0.05) for Group 1 and 2, respectively. These results indicate that supplementation of culture medium NCSU-23 with HA improves the quality (assessed by apoptotic index) of pig embryos but does not increase the total cell number in pig blastocysts as reported by Kim HS et al. 2005 (Theriogenology 63, 1167-1180). However, further research to test the HA’s effect on cryopreservation of in vitro and in vivo produced pig embryos are needed.


Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Popelková ◽  
Z. Turanová ◽  
L. Koprdová ◽  
A. Ostró ◽  
S. Toporcerová ◽  
...  

SummaryThe aim of the study was to determine the efficiency of two vitrification techniques followed by two assisted hatching (AH) techniques based on post-thaw developmental capacity of precompacted rabbit embryos and their ability to leave the zona pellucida (hatching) during in vitro culture. The total cell number and embryo diameter as additional markers of embryo quality after warming were evaluated. In vivo fertilized, in vitro cultured 8–12-cell rabbit embryos obtained from superovulated rabbit does were cryopreserved by two-step vitrification method using ethylene glycol (EG) as cryoprotectant or by one-step vitrification method with EG and Ficoll (EG+Ficoll). Thawed embryos were subjected to enzymatic or mechanical AH. Vitrified EG group showed significantly lower (P < 0.05) blastocyst rate (22.5%) and hatching rate (15%) than those vitrified with EG + Ficoll (63 and 63% resp.) and that of control (97 and 97% respectively). Significantly lower values of total cell number (P < 0.05) as well as embryo diameter (P < 0.01) in EG group compared with EG + Ficoll and control group were recorded. No significant difference was found in developmental potential of warmed embryos treated by either mechanical or enzymatic AH. The present study demonstrates that the EG + Ficoll vitrification protocol provides superior embryo survival rates over the EG vitrification protocol for 8–12-cell stage precompacted rabbit embryos. No positive effect of either mechanical or enzymatic AH on the post-thaw viability and quality of rabbit embryos in vitro was observed.


2016 ◽  
Vol 28 (2) ◽  
pp. 171
Author(s):  
J. A. Benne ◽  
L. D. Spate ◽  
B. M. Elliott ◽  
R. S. Prather

For decades it has been known that reactive oxidative species (ROS) form during in vitro embryo culture. A buildup of ROS can be detrimental to individual cells in the embryo and lead to a decrease in development and quality. To overcome oxidative stress in culture systems, additives, such as taurine and/or hypotaurine, have been used. In the pig, taurine or hypotaurine addition is deemed necessary for normal in vitro development. Another commonly used technique to reduce ROS is to culture embryos in a lowered oxygen environment (e.g. 5%). Porcine zygote medium 3 (PZM3) base culture medium is used in the following experiments and contains 5 mM hypotaurine, which is one of the most costly additives in the medium. The objective of this experiment was to determine if hypotaurine is still necessary if the embryos were cultured in 5% O2 from the zygote to the Day 6 blastocyst stage. In Experiment 1, oocytes were matured for 44 h and fertilized in vitro. After fertilization, presumptive zygotes were then transferred to 500 µL of MU-1 medium (PZM3 with 1.69 mM arginine) that either contained or did not contain hypotaurine for overnight culture at 20% O2. On Day 1, the same embryo culture plates were moved to 5% O2, 5% CO2, and 90% N2 and cultured to Day 6. The percent blastocyst stage was determined, and total cell number was counted in 3 of the 5 replicates in order to give us an indication of the embryo quality. The percent blastocyst in the controls (+hypotaurine) was 34.4% ± 2.8 and not different from the no hypotaurine (32.9% ± 2.2; N = 830; 5 replications; P > 0.10). Furthermore, total cell number was not different between the two groups (30.8 ± 1.5 v. 33.6 ± 1.8, respectively, N = 146; 3 replications; P > 0.10). In Experiment 2, the same experiment was repeated in somatic cell nuclear transfer derived embryos, which may be more sensitive to ROS due to the micromanipulation procedure. Wild type fetal fibroblast cells were used as donor cells. There was no significant difference in development to the blastocyst stage due to the presence or absence of hypotaurine (17.7% ± 2.5 v. 11.8% ± 2.3, respectively; N = 454; 4 replications; P = 0.07). All blastocyst data were analysed using the GENMOD procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA), and cell number data were analysed using the PROC GLM also with SAS 9.4. These data show that porcine embryos can be efficiently cultured to the blastocyst stage without adding any oxygen free radical scavengers to the media when culturing in reduced oxygen atmosphere. Further studies include evaluating term development via embryo transfers and measuring ROS production of these embryos. Funding was provided by Food for the 21st Century and the National Institutes of Health (U42 OD011140).


2005 ◽  
Vol 17 (2) ◽  
pp. 221
Author(s):  
J.H. Kim ◽  
G.S. Lee ◽  
H.S. Kim ◽  
S.H. Lee ◽  
D.H. Nam ◽  
...  

Developing a porcine embryo culture system is important for increasing the rates of implantation and pregnancy of somatic cell nuclear transfer (SCNT) embryos. Ethylenediaminetetraacetic acid (EDTA) was shown to inhibit glycolytic activity of cleavage stage embryos, thereby preventing the premature stimulation of glycolysis and enhancing development. However, EDTA should not be used for later-stage embryos as the inhibition of glycolysis reduces energy production at the blastocyst stage and significantly inhibits inner cell mass development. On the other hand, addition of a nitric oxide (NO) scavenger, hemoglobin (Hb), to the culture medium is known to promote embryo development to the blastocyst stage. This study was conducted to evaluate the beneficial effect of EDTA combined with Hb on pre-implantation development of porcine embryos in vitro. Porcine embryos produced by in vitro maturation and fertilization were cultured for 6 days in North Carolina State University (NCSU)-23 medium supplemented with EDTA or/and Hb. All data were subjected to one-way ANOVA and protected least significant difference (LSD) test using the general linear models (GLM) procedure of the statistical analysis system (SAS Institute, Inc., Cary, NC, USA) program to determine differences among experimental groups. Statistical significance was determined when the P value was less than 0.05. In Exp. 1, culturing porcine zygotes with 100 mM EDTA (n = 537) significantly increased cleavage rates (85.3%) at 48 h post-insemination compared to supplementing with 0, 1, or 10 mM EDTA (78.9, 79.7, or 78.2%, respectively). However, EDTA at these concentrations did not promote blastocyst formation compared to the control. In addition, no difference was observed in total cell numbers in blastocysts among the experimental groups (41.8, 42.6, 45.8, 44.5, respectively). In Exp. 2, in vitro-fertilized oocytes were cultured with 0, 1, or 10 mg/mL Hb. Culturing with Hb did not promote porcine embryo development, but significantly increased the total cell number of blastocysts obtained from 1 mg/mL Hb supplementation (n = 566) compared to that of the control (56.8 vs. 41.6). In Exp. 3, culturing embryos (n = 548) with 100 mM EDTA + 1 mg/mL Hb significantly improved rates of cleavage (84.0% vs. 75.2%) and blastocyst formation (19.2% vs. 12.7%), and the total number of cells in blastocysts compared to those of the control (58.4 vs. 42.3). In conclusion, our results demonstrated that EDTA or Hb have different roles in supporting in vitro pre-implantation development of porcine embryos; EDTA mainly stimulated early cleavage up to the 2- to 4-cell stage, and Hb promoted the total cell number of blastocysts. However, combined supplementation with these two chemicals improved cleavage, blastocyst formation, and total cell number in blastocysts. This study was supported by a grant from Korea Ministry of Science and Technology (Biodiscovery).


2006 ◽  
Vol 18 (2) ◽  
pp. 152
Author(s):  
C. Cuello ◽  
F. Berthelot ◽  
B. Delaleu ◽  
C. Almiñana ◽  
J. M. Vázquez ◽  
...  

The development of the open pulled straw vitrification has provided excellent results of in vitro porcine embryo development. Embryo quality evaluation after vitrification has been traditionally focused on morphological assessment performed by stereomicroscopy. The objective of this experiment was to evaluate the efficiency of the stereomicroscopic evaluation of vitrified-warmed (V) porcine blastocysts. Unhatched blastocysts were obtained after slaughter from Large-White gilts (n = 9). Blastocysts (n = 75) were vitrified and warmed using the protocol described by Cuello et al. (2004 Theriogenology 61, 353-361). After warming, vitrified blastocysts were cultured for 24 h. Then blastocysts were morphologically assessed for their progression and morphology by stereomicroscopy. Blastocysts that reformed their blastocoelic cavities showing an excellent appearance were considered viable. Some of the viable blastocysts kept their zonae pellucidae (V viable expanded blastocysts) and others hatched during the in vitro culture (V viable hatched blastocysts). The remaining blastocysts were classified as degenerated embryos. A group of fresh blastocysts was not vitrified and cultured in vitro for 24 h (control group). All of the control blastocysts were considered viable by stereomicroscopy. Some fresh, V viable expanded, V viable hatched, and V degenerated blastocysts (n = 13, n = 19, n = 9, and n = 9, respectively) were processed for ultrastructural study by light and transmission electron microscopy or stained with Hoechst-33342 and TUNEL for cell death evaluation (n = 16, n = 21, n = 11, and n = 6, respectively). All V hatched blastocysts showed ultrastructure similar to that of control hatched blastocysts. However, 26.3% of the V viable expanded blastocysts revealed important ultrastructural alterations in comparison with control expanded blastocysts. These observations suggest that stereomicroscopic evaluation was not efficient enough for V expanded blastocysts. As expected, degenerated blastocysts showed ultrastructural disintegration and disorganization. Hatched V blastocysts did not differ (P < 0.05) from control hatched blastocysts with regard to the total cell number and ratio of death cells (173 � 4.8 vs. 202.1 � 10.9 and 2.8 � 0.5% vs. 1.9 � 0.3%, respectively). However, V expanded blastocysts a had higher (P < 0.01) cell death level (4.3 � 3.4%) than that observed in the control expanded blastocysts (1.1 � 0.3%). Degenerated embryos showed the lowest (P < 0.01) total cell number (45.7 � 4.0). The 66.7% of the degenerated blastocysts exhibited wide TUNEL-labeled areas, and the remaining 33.3% showed TUNEL label over 19.4 � 6.3% of the cells. In conclusion, the hatching rate assessed by stereomicroscopy is a more efficient parameter than assessing the in vitro viability (ratio of blastocysts that reformed their blastocoelic cavities after warming) for estimating the quality of V blastocysts. This work was supported by CICYT (AGL2004-07546) and S�neca (01287/PD/04).


2013 ◽  
Vol 25 (1) ◽  
pp. 177 ◽  
Author(s):  
M. Castillo-Martín ◽  
M. Yeste ◽  
R. Morató ◽  
T. Mogas ◽  
S. Bonet

The benefits of adding l-ascorbic acid during the cryopreservation procedure have been reported before in mouse and bovine. In this study, the effects of l-ascorbic acid (AC) supplementation during culture, cryopreservation, or both procedures on the developmental ability and embryo quality of in vitro produced porcine blastocysts were examined. Embryo quality criteria consisted of total cell number, percentage of apoptosis, and cryotolerance. After in vitro fertilisation, presumptive zygotes were randomly assigned to 2 culture treatments in which the culture medium NCSU23 was supplemented with 100 µM AC (n = 1162) or nonsupplemented (n = 1163) for a 144-h period. On Day 6, blastocyst formation was assessed by stereomicroscopy, and a representative fraction of Grade I- and II-blastocysts of each culture treatment was evaluated using 4′,6-diamidino-2-phenylindole-TUNEL co-staining and considered as fresh-control. The remaining fraction of Grade I- and II-blastocysts was vitrified/warmed following the Cryotop® method. To determine the effect of AC supplementation during cryopreservation procedures, each culture treatment was divided into 2 groups: (1) embryos exposed to 100 µM AC, and (2) nonexposed embryos (vitrified-control). Survival was determined according to reexpansion rates after 24 h of recovery in NCSU23 medium. After 24 h, reexpanded blastocysts were co-stained using the 4′,6-diamidino-2-phenylindole-TUNEL technique, and total number of cells and apoptosis indexes were determined. Experiment was replicated 9 times for each group. Data were analyzed by t-test for independent variables and a 2-way ANOVA. Results are expressed as means ± SE, and the significant level was set at 5% (Table 1). After culture, supplementing NCSU23 medium with AC showed no significant differences in blastocyst formation (fresh-control 11.6 ± 7.8 v. AC 11.6 ± 7.7), in number of cells (fresh-control 36.7 ± 15.8 v. AC 36.1 ± 15.9), or in apoptosis index (fresh-control 2.9 ± 5.7 v. AC 3.5 ± 4.7). On the other hand, only when both culture and vitrified media were supplemented with AC was there a significant increase of blastocyst survival. In contrast, no significant differences in embryo survival were observed when only 1 of these 2 media (culture or vitrification) was supplemented. Supplementing culture media or cryopreservation solutions with AC did not affect the total cell number or apoptosis index in vitrified blastocysts. In conclusion, the addition of 100 µM l-ascorbic acid to the culture and cryopreservation solutions improves the cryotolerance of in vitro-produced porcine blastocysts. Table 1.Survival of blastocysts (24 h), total cell number, and percentage of apoptosis after vitrification/warming


2015 ◽  
Vol 27 (1) ◽  
pp. 216 ◽  
Author(s):  
A. Veshkini ◽  
M. Khajenabi ◽  
A. Mohammadi-Sangcheshmeh

Fatty acids are important sources of energy for oocytes and embryos. In bovine, an increased level of rumen-inert fatty acids in the diet improved the developmental competence of oocytes to the blastocyst stage and also embryo quality. As described in our previous report, providing appropriate levels of α-linolenic acid (ALA) in maturation medium had beneficial effects on nuclear maturation and embryonic development in the goat. Considering these beneficial effects, here we have conducted experiments to evaluate whether addition of ALA to goat oocyte maturation medium can affect the quality of blastocyst and the transcription of apoptosis-related Bax, Bcl-2, and p53 genes. Ovaries were collected from goats, and cumulus-oocyte complexes (COC) were recovered by the slicing method. The COC were placed in maturation medium supplemented with 50 µM ALA. Oocytes in the control group were incubated in the same maturation medium without ALA. In vitro maturation (IVM) was performed in a humidified atmosphere containing 5% CO2, 5% O2, and 90% N2 at 38.5°C for 24 h. After IVM, oocytes from both the treatment (n = 113) and control (n = 104) groups were subjected to IVF followed by culture in CR1aa medium for 8 days under the conditions stated above. The cleavage and blastocyst rates were recorded at Days 3 and 8 of culture, respectively. To examine the effect of ALA on total cell number and apoptosis of the blastocyst cells, the blastocysts from 50 μM ALA-treated and control oocytes were stained with 4′,6-diamidino-2-phenylindole to count total cell number, and apoptotic cells in these blastocysts were detected with TUNEL assay. Blastocysts derived either from 50 μM ALA-treated oocytes or control oocytes were also evaluated for the expression of Bax, Bcl-2, and p53 genes. The cleavage and blastocyst rates were compared by chi-square analysis. Differentially expressed genes were analysed by 1-way ANOVA. A P-value of less than 0.05 was considered significant. Although cleavage rates after IVF were similar (P > 0.05) between 50 μM ALA-treated (68.1%) and control (55.8%) groups, 50 μM ALA-treated oocytes produced more (25.7%) blastocysts than the control group (13.5%; P < 0.05). Blastocysts derived from oocytes supplemented with 50 μM ALA not only had a greater (P < 0.05) total cell number (115.2), but also a lower (P < 0.05) number of apoptotic cells (3.1) compared with the control blastocysts (110.8 and 4.2, respectively). The relative transcript abundance of Bax and p53 was decreased (P < 0.05) in blastocysts that originated from the 50 μM ALA group compared with control blastocysts. Furthermore, there was an increased (P < 0.05) expression of Bcl-2 transcripts in blastocysts derived from the 50 μM ALA-treated oocytes compared with the control. In conclusion, our findings revealed that ALA-treated medium led to an improvement in blastocyst rate and quality as determined by greater total cell number, lower number of apoptotic cells, and altered expression of apoptosis-related genes.


2007 ◽  
Vol 19 (1) ◽  
pp. 235 ◽  
Author(s):  
J. Mestach ◽  
J. Paeshuyse ◽  
J. Neyts ◽  
H. J. Nauwynck ◽  
D. Maes ◽  
...  

Bovine viral diarrhea virus (BVDV) causes serious economic losses in the cattle industry. Evidence exists that only zona pellucida (ZP)-free bovine embryos are susceptible to BVDV infection (Vanroose et al. 1998 Biol. Reprod. 58, 857–866); however, BVDV can adhere to and therefore ‘infect’ both in vivo-(Waldrop et al. 2004 Theriogenology 62, 387–397) and in vitro-produced ZP intact embryos (Stringfellow et al. 2000 Theriogenology 53, 827–839). To eliminate these sanitary risks, pre-treatment of embryos with antiviral compounds may be a promising approach (Givens et al. 2006 Theriogenology 65, 344–355). BPIP (5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine) has been reported to display antiviral activity against BVDV, with a 50% effective inhibition of BVDV-induced cytopathic effect formation at a concentration of 0.04 µM (Paeshuyse et al. 2006 J. Virol. 80, 149–160). However, since the short- and long-term effects of BPIP have not been described, the aim of the current study was to assess whether addition of BPIP for 2 days at a concentration of 5 µM is toxic for ZP-free cattle embryos. Oocytes were aspirated from 3–6-mm follicles of cattle ovaries, matured for 24 h, and subsequently co-incubated with 1 × 106 sperm cells mL−1 in IVF-TALP with 20 µg/mL−1 heparin for 24 h at 39°C and 5% CO2 in air. After fertilization, presumptive zygotes were put in groups of 25 into 50-µL droplets of SOF under oil in 5% CO2, 5% O2, and 90% N2 for 6 days. Afterwards, morulae and blastocysts were collected, rendered ZP-free by means of pronase treatment, and divided into 4 groups: (i) ZP-free control group, (ii) ZP-free control group treated with a volume of DMSO equal to condition (iv), (iii) ZP-free group treated with 5 µM BPIP in DMSO, and (iv) ZP-free group treated with 10 µM BPIP in DMSO. Because BPIP is a fat-soluble molecule, embryos were cultured in 0.5 mL SOF without oil for 2 days. At Day 8, all embryos were fixed, TUNEL-stained, and analyzed for total cell number and percentage of apoptotic cells. Three independent replicates were performed. Results are shown in Table 1 and were analyzed by means of ANOVA. Only group iv showed a significant decrease in total cell number, indicating that at 10 µM BPIP may negatively influence embryo development. At both 5 and 10 µM, BPIP treatment resulted in an increase in percentage of apoptotic cells compared to the control group. However, a similar increase was observed using DMSO alone (group ii), indicating that the apoptotic effect may be due solely to the DMSO. In conclusion, BPIP does not appear to cause embryo toxicity at 5 µM, but an alternative, less toxic, dissolving agent may be considered. Table 1.Embryotoxicity assay of BPIP


2009 ◽  
Vol 21 (1) ◽  
pp. 224
Author(s):  
M. M. Pereira ◽  
F. Q. Costa ◽  
P. H. A. Campos ◽  
R. V. Serapiao ◽  
J. Polisseni ◽  
...  

In vitro maturation (IVM) is a critical step in in vitro bovine embryo production. A number of factors can influence the IVM environment, such as media composition and protein supplementation. Serum and higher O2 tension have been shown to reduce embryo quality; however, little is known about the effects of serum and O2 tension during IVM on embryo quality and development. This study aimed to evaluate the effect of serum and O2 tension on IVM of bovine oocytes. Immature oocytes obtained from slaughterhouse ovaries were randomly distributed in 4 groups of IVM: G1 (n = 253), 0.1% polyvinyl alcohol (PVA) in air; G2 (n = 248), 10% inactivated estrous cow serum (ECS) in air; G3 (n = 270), 0.1% PVA under 5% O2; and G4 (n = 236), 10% ECS under 5% O2. In vitro maturation was performed with TCM-199 culture medium supplemented with 20 μg mL–1 FSH, under 5% CO2 at 38.5°C for 24 h. After maturation, oocytes were in vitro fertilized with 2.0 × 106 sperm mL–1 in Fert TALP medium, supplemented with heparin, for 20 h. Presumptive zygotes were denuded by vortexing and cultured in CR2aa medium with 2.5% fetal calf serum under 5% CO2 and 5% O2 at 38.5°C. Cleavage rate was evaluated 72 h postfertilization, and blastocyst rate and total cell number were evaluated 8 days postfertilization. Morphological classification of embryos was performed at Day 8 according to the International Embryo Transfer Society manual (1998). Cleavage, blastocyst, and grade 1 embryo rates were analyzed by chi-square, and total cell number was analyzed by ANOVA, with means compared by LSD. Results are presented as mean ± SEM. There was no difference (P > 0.05) in cleavage rates among G1, G2, and G4 (61.6, 65.3, and 57.6%, respectively), but cleavage rate was lower (P < 0.05) in G3 (52.5%). Blastocyst rates among G1, G3, and G4 (15.8, 17.7, and 20.3%, respectively) were similar (P > 0.05). However, blastocyst rate in G2 (25.0%) was higher (P < 0.05) than in G1 and G3, but was similar to G4 (P > 0.05). Total cell number was similar (P > 0.05) among G2 (194.1 ± 13.1), G3 (173.3 ± 9.0), and G4 (163.8 ± 8.7), but was lower (P < 0.05) in G1 (124.5 ± 11.4). The grade 1 embryo rate was lower (P < 0.05) in G1 (70.3%) than in G2 (89.5%), but was similar (P > 0.05) to G3 (77.0%) and G4 (83.9%). The results suggest that IVM with PVA in TCM-199 medium under 5% O2 can be performed without reducing embryo development and quality, when compared with ECS. On the other hand, oocyte developmental competence seems to be affected when IVM is performed with PVA under air conditions. Financial support: CNPq, FAPEMIG.


Sign in / Sign up

Export Citation Format

Share Document