253 EFFECTS OF ADDITION OF ALPHA-LINOLENIC ACID INTO MATURATION MEDIUM ON IN VITRO DEVELOPMENT AND EXPRESSION OF APOPTOSIS-RELATED GENES OF GOAT EMBRYOS

2015 ◽  
Vol 27 (1) ◽  
pp. 216 ◽  
Author(s):  
A. Veshkini ◽  
M. Khajenabi ◽  
A. Mohammadi-Sangcheshmeh

Fatty acids are important sources of energy for oocytes and embryos. In bovine, an increased level of rumen-inert fatty acids in the diet improved the developmental competence of oocytes to the blastocyst stage and also embryo quality. As described in our previous report, providing appropriate levels of α-linolenic acid (ALA) in maturation medium had beneficial effects on nuclear maturation and embryonic development in the goat. Considering these beneficial effects, here we have conducted experiments to evaluate whether addition of ALA to goat oocyte maturation medium can affect the quality of blastocyst and the transcription of apoptosis-related Bax, Bcl-2, and p53 genes. Ovaries were collected from goats, and cumulus-oocyte complexes (COC) were recovered by the slicing method. The COC were placed in maturation medium supplemented with 50 µM ALA. Oocytes in the control group were incubated in the same maturation medium without ALA. In vitro maturation (IVM) was performed in a humidified atmosphere containing 5% CO2, 5% O2, and 90% N2 at 38.5°C for 24 h. After IVM, oocytes from both the treatment (n = 113) and control (n = 104) groups were subjected to IVF followed by culture in CR1aa medium for 8 days under the conditions stated above. The cleavage and blastocyst rates were recorded at Days 3 and 8 of culture, respectively. To examine the effect of ALA on total cell number and apoptosis of the blastocyst cells, the blastocysts from 50 μM ALA-treated and control oocytes were stained with 4′,6-diamidino-2-phenylindole to count total cell number, and apoptotic cells in these blastocysts were detected with TUNEL assay. Blastocysts derived either from 50 μM ALA-treated oocytes or control oocytes were also evaluated for the expression of Bax, Bcl-2, and p53 genes. The cleavage and blastocyst rates were compared by chi-square analysis. Differentially expressed genes were analysed by 1-way ANOVA. A P-value of less than 0.05 was considered significant. Although cleavage rates after IVF were similar (P > 0.05) between 50 μM ALA-treated (68.1%) and control (55.8%) groups, 50 μM ALA-treated oocytes produced more (25.7%) blastocysts than the control group (13.5%; P < 0.05). Blastocysts derived from oocytes supplemented with 50 μM ALA not only had a greater (P < 0.05) total cell number (115.2), but also a lower (P < 0.05) number of apoptotic cells (3.1) compared with the control blastocysts (110.8 and 4.2, respectively). The relative transcript abundance of Bax and p53 was decreased (P < 0.05) in blastocysts that originated from the 50 μM ALA group compared with control blastocysts. Furthermore, there was an increased (P < 0.05) expression of Bcl-2 transcripts in blastocysts derived from the 50 μM ALA-treated oocytes compared with the control. In conclusion, our findings revealed that ALA-treated medium led to an improvement in blastocyst rate and quality as determined by greater total cell number, lower number of apoptotic cells, and altered expression of apoptosis-related genes.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-328
Author(s):  
Galina Singina

Abstract The oocyte quality acquired during in vitro maturation (IVM) are the main limitative factors affecting the embryo production. The aim of the present research was to study effects of fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1) during IVM of bovine oocytes on their developmental potential after parthenogenetic activation. Bovine cumulus-oocyte complexes (COC; n = 1176) were cultured for 22h in either standard maturation medium (TCM-199 supplemented with 10% fetal calf serum (FCS), 0.2 mM sodium pyruvate, 10 μg/ml FSH and 10 μg/ml LH; Control) or maturation medium supplemented with different concentrations (5–160 ng/ml) of FGF2 and IGF1. After IVM, matured oocytes activated by sequential treatment with ionomycin followed by DMAP and cyclohexamide and then cultured up to the blastocyst stage. The obtained blastocysts were fixed, and the total cell number and the level of apoptosis were determined using DAPI and TUNEL staining. The data from 4 replicates (77–91 oocytes per treatment) were analyzed by ANOVA. Cleavage rates of activated oocytes did not differ between groups and ranged from 63.7 to 68.1%. The addition of 10, 20 and 40 ng/ml of FGF2 to the IVM medium led to an increase in the yield of blastocysts [from 19.6±1.8% (Control) to 35.2±3.4, 29.8±1.9 and 31.1±2.1%, respectively (P&lt;0.05)] and in the total cell number in embryos that developed to the blastocyst stage (P&lt;0.05). Meanwhile, the blastocyst yield and the total cell number in blastocysts in the IGF1-treated groups were similar to that in the control group. No effects of both growth factors on the proportion of apoptotic nuclei in blastocysts (5.3–7.1%) were observed. Thus, FGF2 (but not IGF1) are able to maintain competence for parthenogenetic development of bovine COC during their maturation invitro. Supported by RFBR (18-29-07089) and the Ministry of Science and Higher Education of Russia.


2007 ◽  
Vol 19 (1) ◽  
pp. 235 ◽  
Author(s):  
J. Mestach ◽  
J. Paeshuyse ◽  
J. Neyts ◽  
H. J. Nauwynck ◽  
D. Maes ◽  
...  

Bovine viral diarrhea virus (BVDV) causes serious economic losses in the cattle industry. Evidence exists that only zona pellucida (ZP)-free bovine embryos are susceptible to BVDV infection (Vanroose et al. 1998 Biol. Reprod. 58, 857–866); however, BVDV can adhere to and therefore ‘infect’ both in vivo-(Waldrop et al. 2004 Theriogenology 62, 387–397) and in vitro-produced ZP intact embryos (Stringfellow et al. 2000 Theriogenology 53, 827–839). To eliminate these sanitary risks, pre-treatment of embryos with antiviral compounds may be a promising approach (Givens et al. 2006 Theriogenology 65, 344–355). BPIP (5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine) has been reported to display antiviral activity against BVDV, with a 50% effective inhibition of BVDV-induced cytopathic effect formation at a concentration of 0.04 µM (Paeshuyse et al. 2006 J. Virol. 80, 149–160). However, since the short- and long-term effects of BPIP have not been described, the aim of the current study was to assess whether addition of BPIP for 2 days at a concentration of 5 µM is toxic for ZP-free cattle embryos. Oocytes were aspirated from 3–6-mm follicles of cattle ovaries, matured for 24 h, and subsequently co-incubated with 1 × 106 sperm cells mL−1 in IVF-TALP with 20 µg/mL−1 heparin for 24 h at 39°C and 5% CO2 in air. After fertilization, presumptive zygotes were put in groups of 25 into 50-µL droplets of SOF under oil in 5% CO2, 5% O2, and 90% N2 for 6 days. Afterwards, morulae and blastocysts were collected, rendered ZP-free by means of pronase treatment, and divided into 4 groups: (i) ZP-free control group, (ii) ZP-free control group treated with a volume of DMSO equal to condition (iv), (iii) ZP-free group treated with 5 µM BPIP in DMSO, and (iv) ZP-free group treated with 10 µM BPIP in DMSO. Because BPIP is a fat-soluble molecule, embryos were cultured in 0.5 mL SOF without oil for 2 days. At Day 8, all embryos were fixed, TUNEL-stained, and analyzed for total cell number and percentage of apoptotic cells. Three independent replicates were performed. Results are shown in Table 1 and were analyzed by means of ANOVA. Only group iv showed a significant decrease in total cell number, indicating that at 10 µM BPIP may negatively influence embryo development. At both 5 and 10 µM, BPIP treatment resulted in an increase in percentage of apoptotic cells compared to the control group. However, a similar increase was observed using DMSO alone (group ii), indicating that the apoptotic effect may be due solely to the DMSO. In conclusion, BPIP does not appear to cause embryo toxicity at 5 µM, but an alternative, less toxic, dissolving agent may be considered. Table 1.Embryotoxicity assay of BPIP


Zygote ◽  
2016 ◽  
Vol 24 (6) ◽  
pp. 890-899 ◽  
Author(s):  
A.L.S. Guimarães ◽  
S.A. Pereira ◽  
M. N. Diógenes ◽  
M.A.N. Dode

SummaryThe aim of this study was to evaluate the effect of adding a combination of insulin, transferrin and selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation (IVM) and in vitro culture (IVC) on in vitro embryo production. To verify the effect of the supplements, cleavage and blastocyst rates, embryo size and total cell number were performed. Embryonic development data, embryo size categorization and kinetics of maturation were analyzed by chi-squared test, while the total cell number was analyzed by a Kruskal–Wallis test (P < 0.05). When ITS was present during IVM, IVC or the entire culture, all treatments had a cleavage and blastocyst rates and embryo quality, similar to those of the control group (P < 0.05). Supplementation of IVM medium with ITS and AA for 12 h or 24 h showed that the last 12 h increased embryo production (51.6%; n = 220) on D7 compared with the control (39.5%; n = 213). However, no improvement was observed in blastocyst rate when less competent oocytes, obtained from 1–3 mm follicles, were exposed to ITS + AA for the last 12 h of IVM, with a blastocyst rate of 14.9% (n = 47) compared with 61.0% (n = 141) in the control group. The results suggest that the addition of ITS alone did not affect embryo production; however, when combined with AA in the last 12 h of maturation, there was improvement in the quantity and quality of embryos produced. Furthermore, the use of ITS and AA during IVM did not improve the competence of oocytes obtained from small follicles.


Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Popelková ◽  
Z. Turanová ◽  
L. Koprdová ◽  
A. Ostró ◽  
S. Toporcerová ◽  
...  

SummaryThe aim of the study was to determine the efficiency of two vitrification techniques followed by two assisted hatching (AH) techniques based on post-thaw developmental capacity of precompacted rabbit embryos and their ability to leave the zona pellucida (hatching) during in vitro culture. The total cell number and embryo diameter as additional markers of embryo quality after warming were evaluated. In vivo fertilized, in vitro cultured 8–12-cell rabbit embryos obtained from superovulated rabbit does were cryopreserved by two-step vitrification method using ethylene glycol (EG) as cryoprotectant or by one-step vitrification method with EG and Ficoll (EG+Ficoll). Thawed embryos were subjected to enzymatic or mechanical AH. Vitrified EG group showed significantly lower (P < 0.05) blastocyst rate (22.5%) and hatching rate (15%) than those vitrified with EG + Ficoll (63 and 63% resp.) and that of control (97 and 97% respectively). Significantly lower values of total cell number (P < 0.05) as well as embryo diameter (P < 0.01) in EG group compared with EG + Ficoll and control group were recorded. No significant difference was found in developmental potential of warmed embryos treated by either mechanical or enzymatic AH. The present study demonstrates that the EG + Ficoll vitrification protocol provides superior embryo survival rates over the EG vitrification protocol for 8–12-cell stage precompacted rabbit embryos. No positive effect of either mechanical or enzymatic AH on the post-thaw viability and quality of rabbit embryos in vitro was observed.


2009 ◽  
Vol 21 (1) ◽  
pp. 148
Author(s):  
D. N. Q. Thanh ◽  
K. Matsukawa ◽  
M. Kaneda ◽  
S. Akagi ◽  
Y. Kanai ◽  
...  

In the mouse, single blastomeres of the 2-cell embryos can develop into adult mice and occasionally both separated blastomeres can give rise to twin animals (reviewed by Tarkowski AK et al. 2001 Int. J. Dev. Biol. 45, 591–596). As a preliminary study for production of monozygotic twins from porcine 2-cell embryos, we investigated the effects of removal of zona pellucida and blastomere isolation at the 2-cell stage on subsequent development of parthenogenetic embryos. Oocytes with the first polar body were parthenogenetically activated after 44 h of in vitro maturation. Stimulated oocytes were then incubated in IVC-PyrLac (IVC medium with pyruvate and lactose) according to the method reported by Kikuchi K et al. (2002 Biol. Reprod. 66, 1033–1041). After 24 to 30 h of parthenogenetic activation, equally cleaved 2-cell embryos were selected and used for the experiments. Some 2-cell embryos were then treated with pronase to remove the zona pellucida and cultured individually as zona-free 2-cell embryos having 2 blastomeres in pair (ZF group), and single blastomeres were split from ZF group and cultured separately (SB group) in V-shaped microwells. In addition, intact 2-cell embryos were cultured individually without pronase treatment as a control group. After 24 h of in vitro culture, IVC-PyrLac was replaced by IVC-Glu (IVC with glucose). The blastocyst rates on Day 6 (Day 0 was defined as the day of electrical stimulation) in control, ZF, and SB groups did not differ (47.6, 50.0, and 42.1%, respectively). Nevertheless, blastocysts derived from the ZF (28.6 ± 3.0) and SB groups (25.9 ± 1.3) had a significantly lower total cell number than that of the control group (41.7 ± 3.2; P < 0.01 by ANOVA). Although the total cell number of blastocysts originating from single blastomeres was significantly lower than that in the intact embryos, the blastocyst formation rates were not different between them. This indicated the possibility of production of monozygotic twins from porcine 2-cell embryos divided into 2 single blastomeres. However, further research is needed to improve blastocyst quality descended from single blastomeres. In conclusion, the removal of the zona pellucida had a negative influence on blastocyst quality but did not affect the development of porcine embryos to the blastocyst stage.


2012 ◽  
Vol 24 (1) ◽  
pp. 207
Author(s):  
Y. Jeon ◽  
S.-S. Kwak ◽  
S.-A. Jeong ◽  
R. Salehi ◽  
Y. H. Seong ◽  
...  

Trans-ε-viniferin is a naturally occurring polyphenol belonging to the stilbenoids family. Trans-ε-viniferin is isolated from Vitis amurensis, 1 of the most common wild grapes in Korea, Japan and China. We investigated the effects of trans-ε-viniferin on in vitro maturation (IVM) and developmental competence after IVF or parthenogenesis (PA). At the laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Chungbuk National University, trans-ε-viniferin was purified from the leaves and stems of Vitis amurensis. Data were analyzed with SPSS 17.0 using Duncan's multiple range test. First, in total, 594 cumulus–oocyte complexes (COC) were used for the evaluation of nuclear maturation. The COC were matured in TCM-199 medium supplemented with various concentrations of trans-ε-viniferin (0, 0.1, 0.5, 1.0 and 5.0 μM) with 10% porcine follicular fluid, 10 IU mL–1 of eCG and 10 IU mL–1 of hCG. After 22 h in maturation culture, the COC were cultured in hormone-free medium supplemented with various concentrations of trans-ε-viniferin for an additional 22 h and then nuclear maturation was evaluated. Second, in total, 300 matured oocytes were used to examine the effects of different trans-ε-viniferin concentrations (0, 0.5 and 5.0 μM) on porcine oocyte intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. Lastly, the developmental competence of oocytes matured with different concentrations of trans-ε-viniferin (0, 0.5 and 5.0 μM) was evaluated after IVF or PA. In total, 711 embryos were evaluated. As results, we observed that trans-ε-viniferin treatment during IVM did not improve the nuclear maturation of oocytes in any group (84.2, 86.6, 85.5, 83.3 and 79.2%, respectively), but significantly increased (P < 0.05) intracellular GSH levels in the 0.5 μM group (0 μM vs 0.5 μM; 14.6 vs 16.8 pmol oocyte–1) and reduced ROS levels (0 μM vs 0.5 μM and 50 μM; 174.6 vs 25.7 and 23.8 pixel oocyte–1). Oocytes treated with trans-ε-viniferin during IVM did not have significantly different cleavage rates or blastocyst formation rates after IVF, but total cell numbers were significantly higher (P < 0.05) in the 0.5 and 5.0 μM treatment groups (53.6 ± 4.0 and 47.9 ± 3.1) compared to the control group (36.4 ± 2.2). The PA embryos showed similar results; there were no significant differences in cleavage rates and blastocyst formation rates, but the total cell number significantly increased in the 0.5 and 5.0 μM treatment groups (59.6 ± 4.2 and 60.8 ± 4.6) compared to the control group (43.1 ± 2.1). In conclusion, these results indicate that trans-ε-viniferin treatment during porcine IVM increased total cell number of blastocysts, possibly through increasing intracellular GSH synthesis and reducing ROS levels. This work was supported by a grant from the Korea institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries, Republic of Korea.


2014 ◽  
Vol 26 (1) ◽  
pp. 193 ◽  
Author(s):  
L. T. K. Do ◽  
V. V. Luu ◽  
Y. Sato ◽  
M. Taniguchi ◽  
T. Otoi

Heat stress can engender various disorders in reproductive functions such as impairment of oocyte maturation, fertilization, and embryonic development. Astaxanthin, an extremely common carotenoid, is a typical fat-soluble antioxidant that scavenges ROS and blocks lipid peroxidation. Moreover, astaxanthin has been shown to improve the development of embryos exposed to heat stress by a reduction in stress-inducible genes. This study was conducted to investigate the effects of astaxanthin supplementation on the meiotic competence, fertilization, and development of porcine oocytes exposed to high temperature (41°C) during maturation culture. Cumulus–oocyte complexes (COC) collected from ovaries were transferred into maturation medium supplemented with astaxanthin (0, 0.25, 0.5, or 1.0 ppm) and were then cultured for 46 h at 41°C or 38.5°C. After maturation culture, the COC were subjected to IVF and embryo culture to evaluate the fertility and development of oocytes. The total cell number and DNA fragmentation in the blastocysts were assessed using terminal deoxynucleotidyl transferase dUTP nick end labelling and Hoechst 33342 staining. The total numbers of oocytes matured at 41°C and 38.5°C in each treatment group were 432 to 470 and 426 to 444, respectively. Data were analysed using ANOVA, followed by Fisher's protected least significant difference test. Exposure to elevated temperatures during maturation culture significantly reduced the proportions of oocytes that reached metaphase II. When the COC were cultured in the maturation medium supplemented with 0.5 and 1.0 ppm of astaxanthin under heat stress conditions (41°C), the supplementation of astaxanthin significantly improved the proportions of maturation, fertilization, and blastocyst formation compared with the control group (0 ppm) (50–52%, 45–55%, and 11–12% v. 17, 25, and 6%, respectively). The supplementation of the maturation medium with 0.25 ppm of astaxanthin improved only blastocyst formation (9.6%). Similarly, the supplementation of astaxanthin at 1.0 ppm improved the proportions of maturation, fertilization, and blastocyst formation of oocytes matured at 38.5°C s compared with the control group (67, 57, and 18% v. 48, 33, and 12%, respectively). However, no beneficial effect of astaxanthin supplementation was found in the total cell number or DNA fragmentation in the blastocysts, irrespective of culture temperature. Our findings show that the supplementation of astaxanthin to maturation medium improves maturation, fertilization, and embryo development of porcine oocytes exposed to heat stress during maturation culture.


2012 ◽  
Vol 24 (1) ◽  
pp. 160
Author(s):  
K. Lee ◽  
J. Teson ◽  
L. Spate ◽  
C. N. Murphy ◽  
R. S. Prather

There have been significant improvements in the culture of porcine embryos in vitro; however, it is still suboptimal. Improvements in porcine embryo culture would benefit utilisation of porcine embryos for a variety of purposes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be expressed in the female reproductive tract and the level of its expression is high between conception and implantation. Previous studies show supplementing GM-CSF in embryo culture promotes embryonic development in human and bovine embryos. The aim of this study was to investigate the effect of GM-CSF on the culture of porcine embryos derived from somatic cell nuclear transfer (SCNT) and IVF. Different concentrations of recombinant porcine GM-CSF (0, 2, 10 ng mL–1) were introduced into Porcine Zygote Medium 3 from Day 1 to 6. Frequencies of cleaved embryos and blastocyst formation were recorded and analysed by using ANOVA following arcsin transformation. Total cell number in blastocysts from each group were counted and compared by using the Student's t-test. Differences at P < 0.05 were considered significant. A total of 563 SCNT embryos from 6 different donor cell lines on 11 different days were produced for the study. Incubation of SCNT embryos with GM-CSF did not affect the frequency of cleaved embryos. Frequencies of cleaved embryos in control (0 ng mL–1), 2 ng mL–1 GM-CSF and 10 ng mL–1 GM-CSF were 64.2%, 68.1% and 65.0%, respectively. Interestingly, both concentrations of GM-CSF significantly increased the frequency of blastocyst formation as compared with the control. In 2 ng mL–1 and 10 ng mL–1 of GM-CSF groups, 30.8% and 32.3% of embryos reached blastocyst respectively, whereas only 22.4% of embryos reached blastocyst in the control group. A significant increase in total cell number in blastocysts was observed when GM-CSF was introduced into embryo culture. An average of 28.8 ± 0.9 cells was recorded in the control group, whereas 31.9 ± 1.1 and 31.8 ± 1.1 were observed in 2 ng mL–1 and 10 ng mL–1 of GM-CSF groups, respectively. Similar effects were observed when GM-CSF was introduced to the culture of IVF embryos. For IVF study, 525 embryos were generated on 10 different days and embryos cultured in the presence of GM-CSF tended to show higher blastocyst formation (P = 0.1). Frequencies of blastocyst per cleaved in the 3 groups were 55.7% (control), 65.7% (2 ng mL–1 GM-CSF) and 66.7% (10 ng mL–1 GM-CSF). In addition, culture of IVF embryos with GM-CSF significantly increased total cell number in Day 6 blastocysts. Total cell number in blastocysts in 2 ng mL–1 GM-CSF (34.2 ± 0.8) and 10 ng mL–1 GM-CSF (34.4 ± 1.2) were significantly higher compared with control (27.3 ± 1.2). Our results indicate that introducing GM-CSF into embryo culture media can increase the quality of blastocyst stage embryos. An increase in the frequency of blastocyst formation and total cell number in blastocysts suggests that GM-CSF can be used to produce better-quality embryos in vitro. Currently, effects of GM-CSF on implantation of SCNT embryos are under investigation. Further studies would elucidate the specific mechanism of GM-CSF on porcine embryos.


2016 ◽  
Vol 28 (7) ◽  
pp. 886 ◽  
Author(s):  
Roser Morató ◽  
Míriam Castillo-Martín ◽  
Marc Yeste ◽  
Sergi Bonet

The aim of our study was to assess whether the cryotolerance of in vitro-produced embryos could be influenced by the length of in vitro culture and size of blastocoel cavity before vitrification, using the pig as a model. For this purpose we analysed the cryoresistance and apoptosis rate of blastocysts at different stages of development as derived on Day 5 and 6 of in vitro culture. Blastocysts were subsequently vitrified, warmed and cultured for 24 h. Re-expansion rates were recorded at 3 and 24 h and total cell number and apoptotic cells were determined at 24 h. Day-6 blastocysts showed the highest rates of survival after warming, which indicates higher quality compared with Day-5 blastocysts. Higher re-expansion rates were observed for expanded blastocysts and those in the process of hatching when compared with early blastocysts. Total cell number and apoptotic cells were affected by blastocyst stage, vitrification–warming procedures and length of in vitro culture, as expanding and hatching–hatched blastocysts from Day 6 presented higher percentages of apoptotic cells than fresh blastocysts and blastocysts vitrified at Day 5. Our findings suggest that the cryotop vitrification method is useful for the cryopreservation of porcine blastocysts presenting a high degree of expansion, particularly when vitrification is performed after 6 days of in vitro culture. Furthermore, these results show that faster embryo development underlies higher blastocyst cryotolerance and provide evidence that blastocoel cavity expansion before vitrification is a reliable index of in vitro-produced embryo quality and developmental potential.


2006 ◽  
Vol 18 (2) ◽  
pp. 152
Author(s):  
C. Cuello ◽  
F. Berthelot ◽  
B. Delaleu ◽  
C. Almiñana ◽  
J. M. Vázquez ◽  
...  

The development of the open pulled straw vitrification has provided excellent results of in vitro porcine embryo development. Embryo quality evaluation after vitrification has been traditionally focused on morphological assessment performed by stereomicroscopy. The objective of this experiment was to evaluate the efficiency of the stereomicroscopic evaluation of vitrified-warmed (V) porcine blastocysts. Unhatched blastocysts were obtained after slaughter from Large-White gilts (n = 9). Blastocysts (n = 75) were vitrified and warmed using the protocol described by Cuello et al. (2004 Theriogenology 61, 353-361). After warming, vitrified blastocysts were cultured for 24 h. Then blastocysts were morphologically assessed for their progression and morphology by stereomicroscopy. Blastocysts that reformed their blastocoelic cavities showing an excellent appearance were considered viable. Some of the viable blastocysts kept their zonae pellucidae (V viable expanded blastocysts) and others hatched during the in vitro culture (V viable hatched blastocysts). The remaining blastocysts were classified as degenerated embryos. A group of fresh blastocysts was not vitrified and cultured in vitro for 24 h (control group). All of the control blastocysts were considered viable by stereomicroscopy. Some fresh, V viable expanded, V viable hatched, and V degenerated blastocysts (n = 13, n = 19, n = 9, and n = 9, respectively) were processed for ultrastructural study by light and transmission electron microscopy or stained with Hoechst-33342 and TUNEL for cell death evaluation (n = 16, n = 21, n = 11, and n = 6, respectively). All V hatched blastocysts showed ultrastructure similar to that of control hatched blastocysts. However, 26.3% of the V viable expanded blastocysts revealed important ultrastructural alterations in comparison with control expanded blastocysts. These observations suggest that stereomicroscopic evaluation was not efficient enough for V expanded blastocysts. As expected, degenerated blastocysts showed ultrastructural disintegration and disorganization. Hatched V blastocysts did not differ (P < 0.05) from control hatched blastocysts with regard to the total cell number and ratio of death cells (173 � 4.8 vs. 202.1 � 10.9 and 2.8 � 0.5% vs. 1.9 � 0.3%, respectively). However, V expanded blastocysts a had higher (P < 0.01) cell death level (4.3 � 3.4%) than that observed in the control expanded blastocysts (1.1 � 0.3%). Degenerated embryos showed the lowest (P < 0.01) total cell number (45.7 � 4.0). The 66.7% of the degenerated blastocysts exhibited wide TUNEL-labeled areas, and the remaining 33.3% showed TUNEL label over 19.4 � 6.3% of the cells. In conclusion, the hatching rate assessed by stereomicroscopy is a more efficient parameter than assessing the in vitro viability (ratio of blastocysts that reformed their blastocoelic cavities after warming) for estimating the quality of V blastocysts. This work was supported by CICYT (AGL2004-07546) and S�neca (01287/PD/04).


Sign in / Sign up

Export Citation Format

Share Document