Effect of Single Layer Centrifugation on reactive oxygen species and sperm mitochondrial membrane potential in cooled stallion semen

2017 ◽  
Vol 29 (5) ◽  
pp. 1039 ◽  
Author(s):  
J. M. Morrell ◽  
A. Lagerqvist ◽  
P. Humblot ◽  
A. Johannisson

Additional means are needed for evaluating the quality of stallion spermatozoa in semen doses for AI. Mitochondrial membrane potential (ΔΨm) has been linked to fertility in some species, but is rarely used in the evaluation of cooled stallion semen; metabolic activity may be associated with reactive oxygen species production (ROS). In the present study, ΔΨm and ROS production were measured in doses of cooled stallion semen. The effect of colloid centrifugation on these parameters was also investigated. In this case, colloid centrifugation involves centrifuging a sperm sample through a silane-coated silica colloid formulation to retrieve the most robust spermatozoa. High and low ΔΨm in cooled stallion semen varied between stallions and between ejaculates, but was not affected by single-layer centrifugation (SLC). The SLC-selected spermatozoa produced significantly less hydrogen peroxide than controls (P < 0.001), which could explain the increased longevity and retention of fertilising capacity seen in previous studies. For SLC samples, ΔΨm was positively associated with viable spermatozoa that were not producing reactive oxygen species (r = 0.49; P < 0.001) and negatively associated with ROS production (for superoxide: r = –0.4, P < 0.01; for hydrogen peroxide: r = –0.39, P < 0.05). There was no clear association between ΔΨm and ROS production in control samples.

2019 ◽  
Vol 18 (9) ◽  
pp. 1313-1322 ◽  
Author(s):  
Manjula Devi Ramamoorthy ◽  
Ashok Kumar ◽  
Mahesh Ayyavu ◽  
Kannan Narayanan Dhiraviam

Background: Reserpine, an indole alkaloid commonly used for hypertension, is found in the roots of Rauwolfia serpentina. Although the root extract has been used for the treatment of cancer, the molecular mechanism of its anti-cancer activity on hormonal independent prostate cancer remains elusive. Methods: we evaluated the cytotoxicity of reserpine and other indole alkaloids, yohimbine and ajmaline on Prostate Cancer cells (PC3) using MTT assay. We investigated the mechanism of apoptosis using a combination of techniques including acridine orange/ethidium bromide staining, high content imaging of Annexin V-FITC staining, flow cytometric quantification of the mitochondrial membrane potential and Reactive Oxygen Species (ROS) and cell cycle analysis. Results: Our results indicate that reserpine inhibits DNA synthesis by arresting the cells at the G2 phase and showed all standard sequential features of apoptosis including, destabilization of mitochondrial membrane potential, reduced production of reactive oxygen species and DNA ladder formation. Our in silico analysis further confirmed that indeed reserpine docks to the catalytic cleft of anti-apoptotic proteins substantiating our results. Conclusion: Collectively, our findings suggest that reserpine can be a novel therapeutic agent for the treatment of androgen-independent prostate cancer.


Author(s):  
Houri Sadri ◽  
Mahmoud Aghaei ◽  
Vajihe Akbari

Nisin, an antimicrobial peptide produced by Lactococcus lactis, is widely used as a safe food preservative and has been recently attracting the attention of many researchers as a potential anticancer agent. The cytotoxicity of nisin against HeLa, OVCAR-3, SK-OV-3, and HUVEC cells was evaluated using MTT assay. The apoptotic effect of nisin was identified by Annexin-V/propidium iodide assay, and then it was further confirmed by western blotting analysis, mitochondrial membrane potential (ΔΨm) analysis, and reactive oxygen species (ROS) assay. The MTT assay showed concentration-dependent cytotoxicity of nisin towards cancer cell lines, with the IC50 values of 11.5-23 µM, but less toxicity against normal endothelial cells. Furthermore, treatment of cervical cancer cells with 12 µM nisin significantly (P<0.05) increased the Bax/Bcl-2 ratio (4.9-fold), reduced ΔΨm (70%), and elevated ROS levels (1.7-fold). These findings indicated that nisin might have anticancer and apoptogenic activities through mitochondrial dysfunction and oxidative stress damage in cervical cancer cells.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Tianyan Jiang ◽  
Haoxiang Guo ◽  
Ya-Nan Xia ◽  
Yun Liu ◽  
Dandan Chen ◽  
...  

Aim: To explore the hepatotoxicity of copper sulfide nanoparticles (CuSNPs) toward hepatocyte spheroids. Materials & methods: Other than the traditional agarose method to generate hepatocyte spheroids, we developed a multi-concave agarose chip (MCAC) method to investigate changes in hepatocyte viability, morphology, mitochondrial membrane potential, reactive oxygen species and hepatobiliary transporter by CuSNPs. Results: The MCAC method allowed a large number of spheroids to be obtained per sample. CuSNPs showed hepatotoxicity in vitro through a decrease in spheroid viability, albumin/urea production and glycogen deposition. CuSNPs also introduced hepatocyte spheroid injury through alteration of mitochondrial membrane potential and reactive oxygen species, that could be reversed by N-acetyl-l-cysteine. CuSNPs significantly decreased the activity of BSEP transporter by downregulating its mRNA and protein levels. Activity of the MRP2 transporter remained unchanged. Conclusion: We observed the hepatotoxicity of CuSNPs in vitro with associated mechanisms in an advanced 3D culture system.


Sign in / Sign up

Export Citation Format

Share Document