In vitro production of small ruminant embryos: latest improvements and further research

2021 ◽  
Vol 33 (2) ◽  
pp. 31
Author(s):  
Joanna M. G. Souza-Fabjan ◽  
Ribrio I. T. P. Batista ◽  
Lucas F. L. Correia ◽  
Maria Teresa Paramio ◽  
Jeferson F. Fonseca ◽  
...  

This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro-produced embryos may increase.

Author(s):  
O. M. Sharan ◽  
V. Yu. Stefanyk ◽  
S. G. Shalovylo

New literature data on research aimed at improving the in vitro production of sheep embryos presents in the article. An analysis of the achievements of scientists from different countries to increase the efficiency of the main stages of embryo production in vitro: maturation of oocytes in vitro, their in vitro fertilization and in vitro embryo culture. In the literature experience has shown that the efficiency of oocyte maturation in vitro is significantly influenced by the experience and qualifications of scientists, the age of the egg donor, the improvement of the environment by adding roscovitin to inhibit meiosis, α-linolenic acid, cerium dioxide nanoparticles (CeO2 NPs) and sericin to accelerate nuclear maturation and increase the number of oocytes of the second meiotic metaphase (MII). The main factors influencing the effectiveness of in vitro fertilization have been identified, and the parameters of the limited time of fertilization ability of sperm and the ability of oocytes to fertilize, which is called the “fertile span”, have been determined. The main effective medium that increases the effectiveness of in vitro fertilization – synthetic oviduct fluid (SOF) with the addition of heparin and serum of cattle or sheep. The main parameters of sheep embryo culture in vitro are presented with the definition of the most commonly used media and their influence on embryonic development. Potential ways to improve the production of sheep embryos in vitro with the determination of morphological evaluation of categories of oocytes, methods of synchronization of their maturation in vitro are also highlighted. At the same time, literature data on the synchronization of oocyte-cumulus complexes with the use of a large number of inhibitors of meiotic division are presented, which according to many scientists may be a key factor in improving the efficiency of sheep embryo production in vitro. In addition, the results of studies of many scientists on the expansion of the fertile gap of oocytes of sheep cultured in vitro using certain biologically active substances were analyzed. In conclusion, the prospect of using the technology of in vitro production of sheep embryos in biomedical research is highlighted.


2014 ◽  
Vol 81 (9) ◽  
pp. 1149-1162 ◽  
Author(s):  
Joanna Maria Gonçalves de Souza-Fabjan ◽  
Barbara Panneau ◽  
Nicolas Duffard ◽  
Yann Locatelli ◽  
José Ricardo de Figueiredo ◽  
...  

2010 ◽  
Vol 22 (1) ◽  
pp. 285
Author(s):  
S. Wohlres-Viana ◽  
M. M. Pereira ◽  
A. P. Oliveira ◽  
J. H. M. Viana ◽  
M. A. Machado ◽  
...  

The Zebu breeds (Bos indicus) are different from European breeds (Bos taurus) in some aspects of their reproductive physiology, including follicle recruitment, number of follicular waves, and oocyte ultrastructure. On the other hand, embryos produced in vivo and in vitro show morphological and developmental differences, which can be related to culture environment. The aim of this study was to evaluate the effect of breed (Gyr v. Holstein) within embryo production system (in vivo and in vitro), as well as effect of production systems within breeds on relative abundance of transcripts related to formation, survival, and subsequent development of blastocysts, such as those involved in water and small solutes transport (Aquaporins 3 and 11), blastocoel formation (Na+/K+-ATPase a1 and |52), and cellular stress response (Peroxiredoxin 1). For in vivo embryo production, donors were superstimulated with FSH and inseminated, and embryos were recovered 7 days after AI. For in vitro embryo production, oocytes recovered by ovum pickup were in vitro matured and fertilized and then cultured for 7 days in culture medium under 5% CO2 at 38.5°C. For each group, blastocysts (n = 15) distributed in 3 pools were used for RNA extraction (RNeasy MicroKit, Qiagen, Valencia, CA, USA), followed by RNA amplification (Messageamp II amplification kit, Ambion-Applied Biosystems, Foster City, CA, USA) and reverse transcription (SuperScript III First-Stand Synthesis Supermix, Invitrogen, Carlsbad, CA, USA). The cDNA were submitted to real-time PCR, using the H2a gene as endogenous control, and analyzed by REST© software. To evaluate breed effect within the production systems, 2 comparisons were performed: (1) in vivo: Gyr v. Holstein and (2) in vitro: Gyr v. Holstein, considering Holstein data as 1.00. To evaluate production system effect within breeds, 2 comparisons were performed: (1) Gyr: in vivo v. in vitro and (2) Holstein: in vivo v. in vitro, considering in vivo produced embryo data as 1.00. The results are shown as mean ± SEM. For in vivo comparison between breeds, Aquaporin 3 (1.66 ± 0.77), Na+/K+-ATPase a1 (1.61 ± 0.56), and Peroxiredoxin 1 (1.61 ± 0.66) were up-regulated (P < 0.05) in Gyr embryos when compared with Holstein embryos, whereas for in vitro comparison, no differences (P > 0.05) were found. For comparisons between production systems within breeds, only Peroxiredoxin 1 (0.31 ± 0.39) was down-regulated (P < 0.01) in in vitro produced Gyr embryos when compared with in vivo counterparts. No differences (P > 0.05) were found between production systems for the Holstein breed. In conclusion, these data suggest that there is a difference on gene expression between Bos taurus and Bos indicus blastocysts, but such difference between breeds can be attenuated by the in vitro production system, indicating an embryo adaptation to the in vitro culture conditions. The data also suggest that the in vitro production system can influence the amount of transcripts in Gyr embryos. Other genes should be evaluated for a better understanding of these differences. Financial support was provided by CNPq and FAPEMIG.


2015 ◽  
Vol 27 (1) ◽  
pp. 205 ◽  
Author(s):  
E. Mullaart ◽  
F. Dotinga ◽  
C. Ponsart ◽  
H. Knijn ◽  
J. Schouten

Improving the efficiency of the in vitro production (IVP) process is very important because it results in more embryos to be used in breeding programs or as commercial service. At CRV, a culture medium consisting of SOF with amino acids and BSA is used. In the past, richer culture media were used with 10% fetal calf serum combined with BRL cell co-culture. Although the efficiency of the IVP process of these media was good, these rather high serum concentrations were quite often related to large offspring syndrome (LOS). The switch to a culture system without serum resulted in a significant reduction in LOS but also in a reduction of embryo yield. The aim of the present study was to investigate the effect of adding low amounts of serum to the culture medium on efficiency of embryo production. Immature cumulus-oocyte complexes (COC) were recovered from ovaries 6 to 8 h upon slaughter. The COC were matured in vitro in TCM199/FCS/LH/FSH supplemented with cysteamine (0.1 mM). Subsequently, matured oocytes were fertilised with frozen-thawed gradient-separated semen and further cultured for 7 days in SOFaaBSA. The SOF medium contained either 0 (control), 0.1, 0.5, or 1.0% oestrus cow serum (ECS). Embryos development was scored at Day 7. Three replicates were performed and results were analysed by chi-square analyses. The results clearly show that adding ECS significantly improved embryo production (Table 1). Interestingly, already very low amounts (0.1%) of serum gave a significant increase in embryo percentage. In conclusion, addition of very low amounts of ECS (0.1%) is beneficial for embryo production, resulting in significantly higher embryo production (from 19 to 27%). In a subsequent field trial with OPU-derived embryos, the effect of addition of 0.1% ECS on birth weight (LOS) of the calves has to be investigated. Table 1.Percentage of blastocysts at Day 7 after culture in SOF medium with different amounts of serum


2021 ◽  
Vol 42 (3) ◽  
pp. 1147-1158
Author(s):  
Maria Fernanda Zamai ◽  
◽  
Fábio Luiz Bim Cavalieri ◽  
Marcia Aparecida Andreazzi ◽  
Fabio Morotti ◽  
...  

Reproductive biotechnologies are emerging as an important element for livestock; however, some strategies must be modified to adapt to different breeding systems, such as the use of follicular synchronization protocols. This study aimed to evaluate follicular synchronization using estradiol benzoate (EB), in the presence of the corpus luteum (CL) from Wagyu oocyte donors in in vitro embryo production (IVEP). Rounds of IVEP were performed in heifers and cows (n=19) that were classified into three groups: G1/CL - animals with CL, G2/WCL - animals without CL, and G3/CL + EB - animals with CL that were subjected to follicular synchronization with EB at D0. The groups G1/CL and G2/WCL were considered the control and undertook the natural process of follicular dynamics. The results showed that the synchronization of the follicular wave with the application of EB in the presence of CL, presented a smaller number of small (6.05 ± 0.55) and large follicles (0.45 ± 0.15), but increased (P < 0.05) the number of medium-sized follicles (16.20 ± 0.90). However, the results of ovum pick up showed that regardless of whether or not EB was applied, and regardless of the presence or absence of CL in the Wagyu donor, there was no difference among the groups (P > 0.05) concerning the number of viable oocytes and the viability rate. It was concluded that follicular synchronization using EB in Wagyu oocyte donors that presented a CL, increased the number of medium-sized follicles. However, there was no improvement in the efficiency of ovum pick up, in vitro embryo production, and pregnancy rate.


2019 ◽  
Vol 31 (1) ◽  
pp. 168
Author(s):  
B. H. Bernal ◽  
J. L. Barajas ◽  
J. A. Ortega ◽  
A. Cedeño ◽  
S. Andrada ◽  
...  

A retrospective analysis of embryo production records from 2013 to 2017 was carried out to evaluate the in vivo and in vitro production (IVP) of embryos in donors of the Bonsmara breed (i.e. tropically adapted Bos taurus). Only donors with production records of both in vivo and in vitro embryos during the same period were used. A total of 127 superovulations and ova/embryo collections of 19 donors were evaluated. The donors were superstimulated with the following protocol: on Day 0 they received a device with 1g of progesterone (DIB, Zoetis, Argentina), 50mg of rogesterone (Progestar, Zoetis), and 5mg of oestradiol-17β (17ßOestradiol, Rio de Janeiro, Argentina) or 2mg of oestradiol benzoate (Gonadiol, Zoetis) intramuscularly (IM) at the same time. Superstimulatory treatments were initiated on the morning of Day 4 with Folltropin-V (Vetoquinol, France; total dose=240 to 340mg IM) in twice-daily decreasing doses over 4 days. All donors received 2 IM injections of 500µg of cloprostenol (Ciclase DL, Zoetis) on the morning and afternoon of Day 6 and; the intravaginal devices were removed on the morning of Day 7 and 100µg of Gonadorelin (gonadotropin-releasing hormone, Gonasyn gdr, Zoetis) was given on the morning of Day 8. Donors were inseminated using semen from 9 Bonsmara bulls, 12 and 24h after gonadotropin-releasing hormone. On Day 15, ova/embryos were collected and classified according to IETS standards. A total of 89 follicular aspirations (ovum pickup) of 19 donors for IVP were evaluated. The ovum pickups were performed at random stages of oestrous cycle, without superstimulation or other hormone treatments. A total of 1109 viable oocytes (12.5±0.9 per ovum pickup) were collected and matured for 24h in 100-µL drops of maturation medium (TCM-199, supplemented with hormones) under mineral oil and incubated at 38.5°C in 5.5% CO2 and humidity at saturation. Fertilization was performed using 3 Bonsmara bulls that were also used for in vivo embryo production. Viable sperm were obtained using the percoll gradient technique (45-90%). The sperm pellet was dissolved in TL-Sperm, centrifuged, and then diluted to a final concentration of 1.5×106 sperm/mL. Zygotes were stripped and placed in drops of 100µL of SOF medium supplemented with 0.4% BSA under oil at 38.8°C, 5.5% CO2, 7% O2, and humidity at saturation for 7 days. The culture medium was renewed on Days 3 and 5. The data were analysed using the GLM procedure of SAS (SAS Institute Inc., Cary, NC, USA), a P-value &lt;0.05 was considered significant. The mean (±standard error of the means) number of CL, ova/embryos collected, fertilized ova, and transferable embryos were 12.9±0.6, 8.8±0.6, 6.6±0.5, and 4.7±0.4, respectively. A total of 662 oocytes (66.3±2.4%) cleaved 48h post-IVF. On Day 7, an average of 4.4±0.3 embryos were produced. No differences were detected in the number of transferable embryos produced in vivo v. those produced in vitro. Furthermore, no significant differences were found between the techniques or bulls on the proportion of embryos produced in relation to the ova/embryos or oocytes obtained (in vivo 51.5±3.2% v. in vitro 42.9±2.5%). In conclusion, the in vivo and in vitro production of embryos are both effective alternatives to increase the number of offspring from valuable Bonsmara donors.


2010 ◽  
Vol 55 (No. 5) ◽  
pp. 190-194
Author(s):  
H. Kohram ◽  
V. Vahedi ◽  
A. Farahavar

The objective of this study was to develop a superovulatory program based on the synchronization of follicular waves with GnRH which could be applied regardless of the stage of the oestrous cycle. In this experiment, GnRH was given to 30 heifers in lactation between Days 0 and 7 (n = 13), 8 and 12 (n = 12), 13 and 16 (n = 5) of the oestrous cycle. Twenty-four heifers were used as controls and did not receive any GnRH. All follicles &ge; 6 mm were punctured 4 days after GnRH treatment in treated animals and between Days 8 and 12 of the oestrous cycle in control heifers. Two days after the follicular puncture, all heifers were superstimulated with 160 mg Folltropin-V given twice daily over 2 days. Oocytes were collected 42 h after the last FSH treatment. The oocytes were subjected to IVM/IVF and the developmental competence of embryos was compared. In vitro production of embryos was affected only by the stages of the oestrous cycle when the GnRH treatment was given and not by the GnRH treatment. No difference (P &gt; 0.1) in the mean number of oocytes, cleavage and embryo production was noted between the control animals and the animals treated with GnRH in the late phase of the oestrous cycle. The mean number of blastocysts was higher (P &lt; 0.05) in heifers treated with GnRH in the mid and the late phase of the oestrous cycle than in the early phase. In conclusion, the in vitro production of embryos was compromised in the present study with heifers following the follicular synchronization with GnRH. This procedure is advantageous for the in vitro production of bovine embryos since the spontaneous oestrus is eliminated. However, more investigations are needed to increase the competence of oocytes obtained following this procedure.


2017 ◽  
Vol 50 (4) ◽  
pp. 109-117
Author(s):  
S.I. Borş ◽  
Şt. Creangă ◽  
D.L. Dascălu ◽  
Elena Ruginosu ◽  
Mădălina Alexandra Davidescu ◽  
...  

AbstractThein vitroproduction (IVP) of bovine embryos increases the selection intensity in cattle and reduces the generation interval, which is very important in the genetic gain. In Romania, this reproductive biotechnology has shown a timid evolution in the last years, although the need for genetic improvement in the area is present. The aim of this paper is to describe the work that resulted in first bovine embryos obtained through IVP in North-Eastern Romania. Oocytes were collected by slashing ovaries from slaughtered cows, matured in a TCM199-based medium and fertilized in TL-based medium microdrops with sperm processed by swim-up procedure. The presumptive embryos were cultured one day in TCM199 and 8 days in SOF-based medium and evaluated in days 7, 8 and 9 after fertilization. We retrieved an average number of 83 usable oocytes/IVF session, which represents 73.8% from the total harvested oocytes. The average number of cleaved embryos was 50.8 per IVF, reflecting an average cleavage rate of 61.2%. An average of 8.6 blastocysts/IVF session was obtained, representing 10.4% of the selected oocytes or 16.9% of the number of cleaved embryos. Although suboptimal, the results were comparable with other reports on IVP in cattle. The adapted IVP protocol, based on maturation with TCM199, fertilization in microdrops of TL and culture of presumptive embryos one day in TCM199 and afterwards in SOF seems to offer acceptable results and will be used for further attempts to produce bovine embryos.


Author(s):  
Anita Soares Barbosa GUIMARÃES ◽  
Laiara Fernandes ROCHA ◽  
Ronival Dias Lima de JESUS ◽  
Gisvani Lopes VASCONCELOS ◽  
Gabriela ANGHINONI ◽  
...  

ABSTRACT In this study, the in vitro production of bovine embryos from zebu and taurine donors was compared. Cumulus-oocyte complexes (COCs) were obtained from 167 Bos taurus and 161 Bos indicus donors by ovum pick-up. COCs were classified based on their morphological quality, matured in incubators for 22 to 24 h in maturation medium, and then fertilized for 18 to 22 h. The zygotes were transferred to the culture medium for seven days. The embryos were classified as morula (OM), initial blastocyst (BI), blastocyst (BL), and expanded blastocyst (BX), before being transferred to synchronized recipient cows. Pregnancy was diagnosed 30-45 days post-transfer. The Bos indicus donors had a higher oocyte yield (n = 2556) than Bos taurus donors (n = 1903) (P = 0.008). The COCs from zebu donors had a better morphological quality than those from taurine donors (n = 689 vs. 444 for grade 1 COC, P < 0.0001; n = 681 vs. 509 for grade 2 COC, P = 0.010, for zebu and taurine donors, respectively). There were differences in embryo production percentages obtained from OM (0.44% from zebu and 6.42% from taurine, P = 0.017), BL (14.18% from zebu and 3.74% from taurine, P < 0.0001), and BX (81.43% from zebu and 75.13% from taurine, P < 0.0001). No significant difference was observed for embryo production from BI and pregnancy rate (P > 0.05). The Bos indicus cows showed greater oocyte recovery, number of viable oocytes, and production of viable embryos than the Bos taurus cows.


Sign in / Sign up

Export Citation Format

Share Document