scholarly journals Transcriptome dynamics in early in vivo developing and in vitro produced porcine embryos

2020 ◽  
Author(s):  
Vera A van der Weijden ◽  
Meret Schmidhauser ◽  
Mayuko Kurome ◽  
Johannes Knubben ◽  
Veronika L Flöter ◽  
...  

Abstract Background: The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts.Results: In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation, tRNA charging, and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, signaling of Rho family GTPases, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts.Conclusions: Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Vera A. van der Weijden ◽  
Meret Schmidhauser ◽  
Mayuko Kurome ◽  
Johannes Knubben ◽  
Veronika L. Flöter ◽  
...  

Abstract Background The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts. Results In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14–3-3-mediated signaling, xenobiotic metabolism general signaling pathway, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts further were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts. Conclusions Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.


2020 ◽  
Author(s):  
Vera A van der Weijden ◽  
Meret Schmidhauser ◽  
Mayuko Kurome ◽  
Veronika L Flöter ◽  
Johannes Knubben ◽  
...  

Abstract Background The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts. Results In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation, tRNA charging, and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, signaling of Rho family GTPases, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts. Conclusions Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.


2021 ◽  
Author(s):  
Vera A van der Weijden ◽  
Meret Schmidhauser ◽  
Mayuko Kurome ◽  
Veronika L Flöter ◽  
Johannes Knubben ◽  
...  

Abstract Background: The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts. Results: In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, xenobiotic metabolism general signaling pathway, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts. Conclusions: Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.


2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Renato Francesco Maria Scalise ◽  
Rosalba De Sarro ◽  
Alessandro Caracciolo ◽  
Rita Lauro ◽  
Francesco Squadrito ◽  
...  

The ischemic injury caused by myocardial infarction activates a complex healing process wherein a powerful inflammatory response and a reparative phase follow and balance each other. An intricate network of mediators finely orchestrate a large variety of cellular subtypes throughout molecular signaling pathways that determine the intensity and duration of each phase. At the end of this process, the necrotic tissue is replaced with a fibrotic scar whose quality strictly depends on the delicate balance resulting from the interaction between multiple actors involved in fibrogenesis. An inflammatory or reparative dysregulation, both in term of excess and deficiency, may cause ventricular dysfunction and life-threatening arrhythmias that heavily affect clinical outcome. This review discusses cellular process and molecular signaling pathways that determine fibrosis and the imaging technique that can characterize the clinical impact of this process in-vivo.


2017 ◽  
Vol 29 (9) ◽  
pp. 1667 ◽  
Author(s):  
M. Arias-Álvarez ◽  
R. M. García-García ◽  
J. López-Tello ◽  
P. G. Rebollar ◽  
A. Gutiérrez-Adán ◽  
...  

In vivo-matured cumulus–oocyte complexes are valuable models in which to assess potential biomarkers of rabbit oocyte quality that contribute to enhanced IVM systems. In the present study we compared some gene markers of oocytes and cumulus cells (CCs) from immature, in vivo-matured and IVM oocytes. Moreover, apoptosis in CCs, nuclear maturation, mitochondrial reallocation and the developmental potential of oocytes after IVF were assessed. In relation to cumulus expansion, gene expression of gap junction protein, alpha 1, 43 kDa (Gja1) and prostaglandin-endoperoxide synthase 2 (Ptgs2) was significantly lower in CCs after in vivo maturation than IVM. In addition, there were differences in gene expression after in vivo maturation versus IVM in both oocytes and CCs for genes related to cell cycle regulation and apoptosis (V-Akt murine thymoma viral oncogene homologue 1 (Akt1), tumour protein 53 (Tp53), caspase 3, apoptosis-related cysteine protease (Casp3)), oxidative response (superoxide dismutase 2, mitochondrial (Sod2)) and metabolism (glucose-6-phosphate dehydrogenase (G6pd), glyceraldehyde-3-phosphate dehydrogenase (Gapdh)). In vivo-matured CCs had a lower apoptosis rate than IVM and immature CCs. Meiotic progression, mitochondrial migration to the periphery and developmental competence were higher for in vivo-matured than IVM oocytes. In conclusion, differences in oocyte developmental capacity after IVM or in vivo maturation are accompanied by significant changes in transcript abundance in oocytes and their surrounding CCs, meiotic rate, mitochondrial distribution and apoptotic index. Some of the genes investigated, such as Gja1, could be potential biomarkers for oocyte developmental competence in the rabbit model, helping improve in vitro culture systems in these species.


2009 ◽  
Vol 21 (1) ◽  
pp. 129
Author(s):  
J. G. Zhao ◽  
J. W. Ross ◽  
Y. H. Hao ◽  
D. M. Wax ◽  
L. D. Spate ◽  
...  

Somatic cell nuclear transfer (SCNT) is a promising technology with potential applications in both agriculture and regenerative medicine. The reprogramming of differentiated somatic nuclei into totipotent embryonic state following NT is not efficient and the mechanism is currently unknown. However, accumulating evidence suggests that faulty epigenetic reprogramming is likely to be the major cause of low success rates observed in all mammals produced through SCNT. It has been demonstrated that increased histone acetylation in reconstructed embryos by applying histone deacetylases inhibitor (HDACi) such as trychostatin A (TSA) significantly enhanced the developmental competence in several species in vitro and in vivo. However TSA has been known to be teratogenic. Compared with TSA, Scriptaid is a low toxic but more efficient HDACi (Su GH et al. 2000 Cancer Res. 60, 3137–3142). The objectives of this study were: 1) to investigate and optimize the application Scriptaid to the NT using Landrace fetal fibroblast cells (FFCs) as donor; 2) investigate the effect of increased histone acetylation on the developmental competence of reconstructed embryos from NIH mini inbred FFCs in vitro and in vivo. The reconstructed embryos were treated with Scriptaid at different concentrations (0 nm, 250 nm, 500 nm and 1000 nm) after activation for 14 to 16 h. IVF embryos without treatment were produced as an additional control. Developmental rates to the 2-cell and blastocyst stage were determined. Developmental potential was determined by transferring Day 1 NT zygotes to the oviducts of surrogates on the day of, or one day after, the onset of estrus. Experiments were repeated at least 3 times and data were analyzed with chi-square tests using SAS 6.12 program (SAS institute, Inc., Cary, NC, USA). The percentage blastocyst of cloned embryos using Landrace FFCs as donors treated with 500 nm Scriptaid was the highest and was significantly higher than untreated group (25% v. 11%, P < 0.05). Percent cleaved was not different among four treatment groups. We used 500 nm Scriptaid for 14 to 16 h after activation for all subsequent experiments. Developmental rate to the blastocyst stage was significantly increased in cloned embryos derived from NIH mini inbred FFCs after treating with Scriptaid (21% v. 9%, P < 0.05), while the blastocyst rate in IVF group was 30%. Embryo transfer (ET) results showed that 5/6 (Transferred embryos No. were 190, 109, 154, 174, 152, and 190, respectively) surrogates (83%) became pregnant resulting in 2 healthy piglets from 2 litters (recipients received 190 and 154 embryos, respectively) in the Scriptaid treatment group, while no pregnancies were obtained in the untreated group from 5 ET (Embryos transferred No. are 140, 163, 161, 151 and 151, respectively). These results suggest that 500 nm Scriptaid treatment following activation increase both the in vitro and in vivo development of porcine SCNT embryos from NIH mini inbred FFCs and the hyperacetylation might actually improve reprogramming of the somatic nuclei after NT. Funding from the National Institutes of Health National Center for Research Resources RR018877.


2011 ◽  
Vol 300 (5) ◽  
pp. F1193-F1202 ◽  
Author(s):  
Wouter N. Leonhard ◽  
Annemieke van der Wal ◽  
Zlata Novalic ◽  
Steven J. Kunnen ◽  
Ron T. Gansevoort ◽  
...  

Autosomal dominant polycystic kidney disease (ADPKD) caused by mutations in either the PKD1 or PKD2 gene is a major cause of end-stage renal failure. A number of compounds targeting specific signaling pathways were able to inhibit cystogenesis in rodent models and are currently being tested in clinical trials. However, given the complex signaling in ADPKD, an ideal therapy would likely have to comprise several pathways at once. Therefore, multitarget compounds may provide promising therapeutic interventions for the treatment of ADPKD. To test this hypothesis, we treated Pkd1-deletion mice with diferuloylmethane (curcumin), a compound without appreciable side effects and known to modulate several pathways that are also altered in ADPKD, e.g., mammalian target of rapamycin (mTOR) and Wnt signaling. After conditional inactivation of Pkd1, mTOR signaling was indeed elevated in cystic kidneys. Interestingly, also activation of signal transducers and activator of transcription 3 (STAT3) strongly correlated with cyst progression. Both pathways were effectively inhibited in vitro by curcumin. Importantly, Pkd1-deletion mice that were treated with curcumin and killed at an early stage of PKD displayed improved renal histology and reduced STAT3 activation, proliferation index, cystic index, and kidney weight/body weight ratios. In addition, renal failure was significantly postponed in mice with severe PKD. These data suggest that multitarget compounds hold promising potential for safe and effective treatment of ADPKD.


Zygote ◽  
2008 ◽  
Vol 16 (2) ◽  
pp. 93-110 ◽  
Author(s):  
Yong Tao ◽  
Lizi Cheng ◽  
Meiling Zhang ◽  
Bin Li ◽  
Jianping Ding ◽  
...  

SummaryThe low efficiency of somatic cell nuclear transfer may be related to the ultrastructural deviations of reconstructed embryos. The present study investigated ultrastructural differences between in vivo-produced and cloned goat embryos, including intra- and interspecies embryos. Goat ear fibroblast cells were used as donors, while the enucleated bovine and goat oocytes matured in vitro as recipients. Goat–goat (GG), goat–cattle (GC) and goat in vivo-produced embryos at the 2-cell, 4-cell, 8-cell and 16-cell stages were compared using transmission electron microscopy. These results showed that the three types of embryos had a similar tendency for mitochondrial change. Nevertheless, changes in GG embryos were more similar to changes in in vivo-produced embryos than were GC embryos, which had more extreme mitochondrial deviation. The results indicate the effects of the cytoplast on mitochondria development. The zona pellucida (ZP) in all three types of embryos became thinner and ZP pores in both GC and GG embryos showed an increased rate of development, especially for GC embryos, while in vivo-produced embryos had smooth ZP. The Golgi apparatus (Gi) and rough endoplasmic reticulum (RER) of the two reconstructed embryos became apparent at the 8-cell stage, as was found for in vivo embryos. The results showed that the excretion of reconstructed embryos was activated on time. Lipid droplets (LD) of GC and GG embryos became bigger, and congregated. In in vivo-produced embryos LD changed little in volume and dispersed gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere illuminated that the nucleus function of reconstructed embryos was partly changed. In addition, at a later stage in GC embryos the nuclear envelope displayed infoldings and the chromatin was concentrated, implying that the blastomeres had an obvious trend towards apoptosis. The gap junctions of the three types of embryos changed differently and GG and GC embryos had bigger perivitelline and intercellular spaces than did in vivo-produced embryos. These results are indicative of normal intercellular communication at an early stage, but this became weaker in later stages in reconstructed embryos. In conclusion, inter- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe destruction. These ultrastructural deviations might contribute to the compromised developmental potential of reconstructed embryos.


Reproduction ◽  
2011 ◽  
Vol 142 (3) ◽  
pp. 401-408 ◽  
Author(s):  
Ning Wang ◽  
Liya Wang ◽  
Fang Le ◽  
Qitao Zhan ◽  
Yingming Zheng ◽  
...  

Despite the efforts to recapitulate the follicle environment, oocytes from in vitro maturation (IVM) have poorer developmental potential than those matured in vivo and the effects on the resultant offspring are of concern. The aim of this study was to determine altered gene expression in oocytes following IVM and to evaluate the expression of the arginine rich, mutated in early stage of tumors gene (Armet) and mitochondrial ribosomal protein L51 (Mrpl51) in embryos and brains of fetal/postnatal mice and the brain development of IVM offspring. An IVM mouse model was established while oocytes matured in vivo were used as the controls. Suppressive subtractive hybridization (SSH) and RT-PCR/western blot were used to analyze the differential expression of genes/proteins between IVM and the control group. HE staining and water maze were used to assess the histological changes in brain tissue and cognition of the offspring. The rates of fertilization, cleavage, and live birth were significantly decreased in IVM group. Thirteen genes were upregulated in IVM oocytes compared with the control, including Armet and Mrpl51. The higher level of Armet in IVM oocytes was retained in brain of newborn mice, which could be related to the upregulation of activating transcription factor 6 (Atf6) and X-box binding protein 1 (Xbp1), while Mrpl51 was expressed normally in brain of postnatal mice. No significant differences were detected in brain weight, neuronal counts, and the cognition in the offspring between the two groups. The present results suggested that IVM could affect the pregnancy outcome and the Armet and Mrpl51 gene/protein expression. The change in Armet expression lasted while the change of Mrpl51 disappeared after birth. However, the brain development of the offspring seemed to be unaffected by IVM.


Sign in / Sign up

Export Citation Format

Share Document