16 STRATEGIES OF FOLLICULAR WAVE SYNCHRONIZATION WITH ESTRADIOL BENZOATE IN GYR (BOS TAURUS INDICUS) CATTLE

2013 ◽  
Vol 25 (1) ◽  
pp. 155
Author(s):  
L. D. P. Sinedino ◽  
B. T. Gerhardt ◽  
J. A. Moura ◽  
A. P. Dourado ◽  
I. L. Goulart ◽  
...  

Physiological and behavioral differences between Bos taurus and Bos indicus can influence the response to a fixed AI protocol. The objective of this study was to examine the reduction of the usual dose of 2 mg of estradiol benzoate (EB) to 1 mg at the beginning of a fixed-time AI protocol, aiming at follicular regression. In a second step, we evaluated the effect of EB on follicle development during follicular pre-deviation and dominance. The experiment was performed at Monte Verde Farm (Uberaba, MG, Brazil). Twenty-two cows (n = 10 heifers and n = 12 nonlactating cows) underwent an estrous synchronization protocol with a progesterone-releasing intravaginal device (P4; Sincrogest®, Ouro Fino Animal Health, São Paulo, Brazil) and received 1 (G1mg, n = 11) or 2 mg (G2mg, n = 11) of EB (Sincrodiol®, Ouro Fino Animal Health), on a random day (designated Day 0). Follicular dynamics was monitored once per day by ultrasonography from Day 0 to 4 with blood sample collections. In a second step, females received 2 mg of EB on Day 3 (GD3, pre-deviation, n = 4) or Day 5 (GD5, dominance, n = 4) of the estrous cycle (Day 0 was the ovulation). Following these treatments, follicular development was monitored daily for 6 days with blood sample collections. The statistical analysis was conducted using the SAS System for Windows 2 (2003; SAS Institute Inc., Cary, NC, USA). The explanatory variables included in the statistical model were the dose of EB, animal category (cows and heifers), and their interaction. The mean test was used to compare intervals from EB treatment to follicular atresia and follicular wave emergence using ANOVA. Progesterone concentrations between groups were compared using the Wilcoxon test. Independently of animal category or stage of the estrous cycle, both EB doses (1 or 2 mg) induced follicular atresia in 2.2 ± 0.9 and 2.1 ± 1.2 days (P > 0.05), respectively. Emergence of a new follicular wave was observed, from Day 0 to 4, in 64% (7/11) of females from G1mg and in 45% (5/11) from G2mg, and the interval between treatment and follicular emergence was 3.4 ± 0.8 and 3.0 ± 1.0 days (P > 0.05), respectively. Plasma progesterone concentrations of the 22 animals increased from 2.1 ± 2.0 ng mL–1 to 7.6 ± 3.0 ng mL–1 by 24 h after the device insertion (P < 0.05), reaching peak concentration (8.0 ± 3.0 ng mL–1) by 48 h after treatment beginning, decreasing to 6.4 ± 2.5 ng mL–1 by 72 h, and remaining constant up to 96 h. Estradiol benzoate injection at follicle pre-deviation (GD3) caused follicular atresia (2.0 ± 1.4 days) and emergence of a new follicular wave in 3.7 ± 0.1 days in all animals (4/4). However, EB injection during follicle dominance (GD5) did not synchronize a new follicular wave and follicles persisted during the time of monitoring. Furthermore, EB applied at dominance hastened luteolysis in 50% (2/4) of the treated animals. In conclusion, a reduced dose of EB (1 mg) at the beginning of the protocol with P4 effectively induces follicular atresia. To synchronize a wave emergence at any stage of the estrous cycle, EB must be associated with an exogenous source of progesterone.

2010 ◽  
Vol 22 (1) ◽  
pp. 300
Author(s):  
T. Miyauchi ◽  
C. A. C. Fernandes ◽  
E. R. Oliveira ◽  
B. F. L. Alves ◽  
J. H. M. Viana

Transvaginal guided follicle aspiration (TGFA) is the main technique used in Brazil to recover oocytes for in vitro embryo production (IVP) in bovine. Different protocols have been proposed to synchronize follicular emergence in oocyte donors, but most of them were developed for use in European breeds of cattle, which show many differences in ovarian physiology when compared with Zebu breeds. The aim of this study was to compare different protocols for preparation of Gyr (dairy zebu breed) oocyte donors. The TGFA were performed in a donor management facility located in Minas Gerais State, southeast Brazil. Pluriparous cycling Gir cows (n = 42) were used as donors. All cows underwent 3 treatments: G1 (control), no treatment before TGFA; G2, 2 mg of estradiol benzoate (EB) for follicular wave synchronization given i.m. 5 days before TGFA; and G3, norgestomet auricular implants given 9 days and 2 mg of EB plus 0.53 mg of cloprostenol given 5 days before TGFA. The interval between TGFA in the same donor was greater than 30 days. All procedures were made by the same technician, using a portable ultrasound device, disposable 19G or 20G needles, and a vacuum pressure of 80 mm Hg. The aspirated follicular fluid was collected in 50-mL Falcon tubes and sent to the laboratory for COC identification and classification under 50 × magnification. Recovered oocytes were classified according to cumulus cell layers and cytoplasm morphology. The total number of oocytes and viable COC recovered and the procedure length (min), including time spent for TGFA and laboratory manipulation, were compared. Data were evaluated by ANOVA, and means compared by Tukey’s test. A total of 126 TGFA sessions were performed, with recovery of 2,809 oocytes (20.31 ± 12.32 of COC and 14.83 ± 7.97 of viable COC per cow/session; mean ± SD). The total number of recovered oocytes and viable COC recovered were lower in G1 compared with G2 and G3 (15.18 ± 11.07 v. 21.18 ± 9.71 and 24.68 ± 9.03; and 9.53 ± 7.22 v. 16.97 ± 6.47 and 18.84 ± 8.90, respectively; P < 0.05) There was no difference (P > 0.05) between G2 and G3 on the number of oocytes or viable COCs recovered. The procedure length, however, was longer in G1 and G2 compared with G3 (49.6 ± 15.1 and 46.9 ± 13.4 v. 35.8 ± 13.1 min, respectively; P < 0.05) The shorter procedure length in G3 was probably associated with the reduced number of cows showing no corpora lutea (38/42, 90%), which resulted in reduction of bleeding and clot formation in the aspirated fluid. These results show that (1) previous follicular wave synchronization by EB can improve the number and quality of recovered oocytes; (2) the absence of corpora lutea does not increase the number of recovered COC and viable COC, but reduces the time spent in the procedure. Intervet Schering Plough Animal Health.


2010 ◽  
Vol 22 (1) ◽  
pp. 358 ◽  
Author(s):  
D. Carballo Guerrero ◽  
A. Tríbulo ◽  
R. Tríbulo ◽  
H. Tríbulo ◽  
G. A. Bó

Although we have previously shown that ovarian superstimulation during the first follicular wave resulted in a successful response (Carballo Guerrero D et al. 2009 Reprod. Fertil. 21, 242), the current protocol needs to be optimized in order to be used in the field. Therefore, an experiment was designed to simplify this treatment and to compare it with the traditional superstimulation protocol using progesterone and estradiol. Simmental cows (n = 14) were subjected to 3 superstimulation treatments (2 first wave groups and 1 control group) in a crossover design (i.e. all cows received the 3 treatments and all treatments were represented on each collection day). Cows in Group 1 received a progesterone-releasing device (Cue-Mate®, Bioniche Animal Health, Belleville, Ontario, Canada) along with 0.150 mg of D + cloprostenol (PGF; Bioprost-D®, Biotay, Buenos Aires, Argentina) at random stages of the estrous cycle. A second PGF was injected 5 days after Cue-Mate® insertion, followed by GnRH (0.050 mg of lecirelin; Biosin-OV®, Biotay) 36 h later (i.e. 7 days after Cue-Mate® insertion). Based on previous studies, ovulation was expected to occur 30 to 36 h later. Therefore, superstimulation treatments were initiated 36 h after GnRH (Day 0), with a total dose of 400 mg NIH-FSH-P1 of Folltropin®-V (Bioniche Animal Health) in twice-daily decreasing doses over 4 days. Prostaglandin was administered with the last 2 Folltropin®-V injections and Cue-Mate® devices were removed with the last Folltropin®-V injection. Cows received 12.5 mg of porcine LH (Lutropin®-V, Bioniche Animal Health) 24 h after Cue-Mate® removal and were AI 12 and 24 h later. Ova/embryos were collected 7 days after porcine LH and evaluated following IETS recommendations. Cows in Group 2 were treated similarly to those in the Group 1, except they did not receive the second PGF injection 5 days after Cue-Mate® insertion (thus eliminating the need to handle animals on that day). Finally, cows in Group 3 [estradiol benzoate (EB)+P4 control group] received a Cue-Mate® plus 2.5 mg of EB (Bioestradiol®, Biotay) and 50 mg of progesterone (P4; Lab., Rio de Janeiro, Argentina) at random stages of their estrous cycle. Superstimulation treatments were initiated 4 days later (Day 0) following the same protocol used in Group 1. Data were transformed to square root and analyzed by ANOVA. Mean (± SEM) numbers of ova/embryos collected, fertilized ova, and transferable embryos did not differ among groups (12.9 ± 2.0, 9.8 ± 1.7, and 6.6 ± 1.2; 11.5 ± 1.7, 9.3 ± 1.5, and 7.7 ± 1.6; and 14.5 ± 2.8, 9.4 ± 2.3, and 6.8 ± 1.7 for Groups 1, 2, and 3, respectively). In conclusion, data demonstrated that superstimulation during the first follicular wave can be successfully used in groups of randomly cycling donors without the need for estrus detection or estradiol to synchronize follicular wave emergence. The protocol is easy to follow and embryo production is comparable to that of the estradiol and progesterone protocol.


2008 ◽  
Vol 20 (1) ◽  
pp. 227
Author(s):  
A. Garcia Guerra ◽  
G. A. Bó ◽  
J. Villarreal ◽  
G. M. Brogliatti

Ovarian asynchrony and variability in response to superstimulation remain the most limiting factors in any embryo transfer program (Armstrong D 1993 Theriogenology 39, 7–24). Ovarian response can be increased and less variable if superstimulatory treatment is started at the time of follicular wave emergence (Bö GA et al. 1995 Theriogenology 43, 31–40). A combination of progesterone (P4) and estradiol have been used to synchronize follicular wave for superstimulation. A retrospective analysis was done to compare the ovarian response, superovulatory response and embryo production of cows in Argentina that received progesterone and estradol prior to superstimulation at different stages of the estrous cycle. This research was carried out using different breed of donors (n = 584, 88% Angus) during the last 4 years in Buenos Aires province, Argentina. Heat detection was performed twice a day. At random stages of the estrous cycle, donors received an intravaginal progesterone device (DIB; Syntex, Buenos Aires, Argentina), 2 mg of estradiol benzoate and 50 mg of progesterone (Syntex, Buenos Aires, Argentina) IM on the same day. On day 4 after DIB insertion, superestimulatory treatment was initiated on a decreasing dose regimen of FSH (Pluset; Callier, Spain, or Folltropin, Bioniche Animal Health Inc., Belleville, Ontario, Canada) as IM injections every 12 h over 4 d. On day 6, DIBs were removed, and cows received two doses of 2 mL of cloprostenol 12 h apart. At heat detection, all donors received a dose of 2 mL of GnRH (Dalmarelin; Fatro Von Franken, Buenos Aires, Argentina) by IM injection and were inseminated 12 and 24 h later. Seven days later, embryo collection was performed and ovarian response was evaluated as number of CL + unovulated follicles by transrectal ultrasound using a 7.5-MHz transducer (Pie Medical, Maastricht, the Netherlands). Ova/embryos were evaluated and classified according to the IETS manual. Donors were assigned to receive DIB and estradiol during the following stages of the cycle: group 1: between days 4 and 7 post-estrus (dominant follicle period), group 2: between days 8 and 12 post-estrus (emergence of the second follicular wave), and group 3: between days 13 and 21 post-estrus (dominant follicle of the second wave). Kruskal-Wallis test was used to compare variables among groups, and results are shown in Table 1. Ovarian response as CL + unovulated follicles and number of ovulations were significantly different among groups (P < 0.05). However, there was no significant difference in the number of fertilized ova or transferable embryos. Nevertheless, numeric differences that show that group 2 (started between days 8 and 12 post-estrus) was always superior for all variables. In conclusion, data suggest that estradiol may be more effective in synchronizing follicle wave emergence for superstimulation during the mid-part of the estrous cycle. Table 1. Superovulatory response in cows in which follicle wave emergence was synchronized with estradiol at different stages of the estrous cycle (mean ± SD) Research supported by Centro Genetico Bovino Eolia S.A.


2007 ◽  
Vol 19 (1) ◽  
pp. 242 ◽  
Author(s):  
L. U. Gimenes ◽  
N. A. T. Carvalho ◽  
M. F. Sá Filho ◽  
H. Ayres ◽  
J. R. S. Torres-Júnior ◽  
...  

In Holstein cows, the diameter of the dominant follicle (DF) at the time of follicle deviation is 8.5 mm and the subordinate follicle (SF) is 7.2 mm (Ginther et al. 1996 Biol. Reprod. 55, 1187–1194). However, follicular responsiveness to an ovulatory treatment occurs only with 10.0-mm-diameter follicles (Sartori et al. 2001 Biol. Reprod. 65, 1403–1409). The current study tested the hypothesis that, in Bos indicus (Nelore and crossbred Nelore � Gir) females, the follicular diameters at the time of deviation and ovulation responsiveness are smaller than those in Holstein cows. The experiment was performed in two phases. In the first phase, 12 Nelore heifers were previously synchronized with a protocol using progestagen and estradiol benzoate. After implant removal, all heifers were evaluated by transrectal ultrasonography (Aloka SSD-500, Tokyo, Japan) every 12 h until Day 5 of the estrous cycle (Day 0 = Day of the ovulation) to assess the time of ovulation, the time of follicle deviation, and the follicular diameter at the deviation. In the second phase, 29 Bos indicus heifers (Nelore and crossbred Nelore � Gir) were previously synchronized with the same protocol as cited above. After the ovulations (Day 0), the follicles were evaluated by transrectal ultrasonography every 24 h, until they reached the diameter of 7.0–8.4 mm (n = 9); 8.5–10.0 mm (n = 10); and &gt;10.0 mm (n = 10). In order to assess the ovulatory capacity, all animals were treated with 25 mg of LH (Lutropin-V�; Bioniche Animal Health, Inc., Belleville, Ontario, Canada) at these follicle diameter ranges. After the LH treatment, all animals were monitored by ultrasonography every 12 h for 48 h. ANOVA, Bartlett, and chi-square tests were used in the statistical analyses. In the first phase, the diameters of the DF and SF at the time of follicular deviation (61.9 � 4.9 h after ovulation) were 6.2 � 0.2 and 5.8 � 0.2 mm, respectively. In the second phase, the the average follicular diameters at the time of LH administration in the groups 7.0–8.4 mm, 8.5–10.0 mm, and &gt;10.0 mm were 7.6a � 0.1 mm, 9.6b � 0.1 mm, and 10.9c � 0.2 mm; and their ovulation rates were 33.3%a (3/9), 80.0%b (8/10), and 90.0%b (9/10), respectively (P &lt; 0.05). The interval from LH treatment to ovulation was 38.0 � 4.0 h, 31.5 � 2.7 h, and 30.0 � 2.0 h, respectively (P &gt; 0.05). In conclusion, in Bos indicus heifers, follicle deviation occurred with smaller diameters than previously reported in Bos taurus breeds. In addition, Bos indicus heifers are able to ovulate in response to 25 mg of LH with smaller diameters compared to those of Bos taurus breeds. Moreover, in Bos indicus heifers, ovulatory capacity is acquired by follicles as small as 7.0–8.4 mm, but this responsiveness significantly increases after follicles reach 8.5–10.0 mm. This work was supported by FAPESP (Proc:03/10203-4); Bioniche Animal Health, Inc., Belleville, Ontario, Canada; and Tecnopec, S�o Paulo, Brazil.


2010 ◽  
Vol 22 (1) ◽  
pp. 357
Author(s):  
R. H. Alvarez ◽  
A. C. Martinez ◽  
R. M. L. Pires

Breed differences in ovarian function were found among beef Bos indicus and Bos taurus cows maintained in a subtropical environment (Alvarez P et al. 2000 J. Anim. Sci. 78, 1291-1302). The aim of this study was to compare ovarian response to superovulation and embryo production of tropical-adapted Bos taurus and Bos indicus cows. The experiment was carried out in a tropical wet climate at the experimental station of Instituto de Zootecnia (latitude 22°46′S, longitude 47°17′W) from November to February (average maximum temperature = 30.0 ± 0.8°C and average absolute precipitation = 153.1 ± 78.8 mm3). Forty Caracu (a local Bos taurus breed) and 50 Nelore (Bos indicus breed) lactating cows were treated with an intravaginal device containing progesterone (1.38 mg; CIDR-B®, Pfizer Animal Health, Montreal, Québec, Canada) and 2.5 mg i.m. of estradiol benzoate (Estrogin®, Farmavet, São Paulo, Brazil). Four days later, the animals were superovulated with multiple i.m. injections of 400 IU of FSH (Pluset®, Calier, Spain) in decreasing doses (75-75, 75-50, 50-25, and 25-25 IU) at 12-h intervals over 4 days. The CIDR-B® device was removed 3 days after the first superovulatory injection and cows received i.m. 150 μg of cloprostenol (Veteglan®, Calier, Spain). Cows were inseminated 48 and 62 h after the cloprostenol injection and embryos were recovered nonsurgically 7 days after insemination. Differences in the number of CL (assessed by ultrasound scanning), total number of ova/embryos, and number of transferable embryos were analyzed by ANOVA. Differences in the number of animals with low response (<3 CL) to superovulation were analyzed by chi-square test. All donors (with the exception of 1 Caracu and 2 Nelore) with ovarian response >3 CL showed estrus at insemination. Three (8.9%) Caracu and 5 (10.0%) Nelore cows had <3 CL following the superovulation treatment (P = 0.68). There was no difference (P > 0.05) in the mean (± SEM) CL counts of Caracu (11.4 ± 3.3) and Nelore (12.0 ± 4.1) cows. Similarly, there were no differences (P > 0.05) between Caracu and Nelore cows for total number of ova/embryos collected (8.6 ± 2.6 v. 9.0 ± 4.3) or transferable embryos (6.0 ± 2.4 v. 5.1 ± 2.9). In conclusion, the superovulation of Caracu and Nelore cows carried out in a tropical climate resulted in similar ovarian responses and embryo production. Supported by FAPESP.


2004 ◽  
Vol 16 (2) ◽  
pp. 129 ◽  
Author(s):  
J.P. Kastelic ◽  
M.G. Colazo ◽  
J.A. Small ◽  
D.R. Ward ◽  
R.J. Mapletoft

The objective was to characterize ovarian follicular dynamics in beef cows treated with a CIDR (Bioniche Animal Health; Belleville, Ontario, Canada) and an injection of estradiol-17β (E2), with or without progesterone (P4), late in the estrous cycle. Previously synchronized, non-lactating, crossbred beef cows (n=36) received a CIDR (Day 0) 16 to 18 days after ovulation and were randomly allocated to one of three treatment groups: no further treatment (Control, n=12), an injection of 5mg E2 (E2, n=12), or 5mg E2 plus 100mg P4 (E2P4, n=12; both from Sigma Chemical Co., St.Louis, MO, USA) i.m. in 2mL canola oil. On Day 7, CIDR were removed and cows received 500μg i.m. of cloprostenol (Estrumate, Schering Plough Animal Health, Pointe-Claire, Quebec, Canada). Ovaries were examined once daily by transrectal ultrasonography to detect ovarian follicle growth profiles, and determine the time of ovulation. Blood samples were taken daily for progesterone determination. Data were analyzed by ANOVA (LSD and Bartlett’s tests), Student’s t-test and chi-square procedures. Diameter of the CL and the dominant follicle, and progesterone concentration on Day 0 did not differ among groups (P=0.6; overall mean (±SD), 16.8±2.7mm, 14.1±2.0mm, and 1.5±1.9ngmL, respectively). Thirteen cows ovulated within 3 days of treatment (50% of E2- and E2P4-treated cows and 8.3% of Control cows; P=0.05); cows that ovulated had smaller CL diameters (15.2±1.7 v. 17.7±2.7mm; P&lt;0.004) and lower progesterone concentrations (0.4±0.2 v.2.1±2.2ngmL; P&lt;0.001) at the time of treatment. Follicular wave emergence occurred within 7 days in 4/12 Control cows, 10/12 E2-treated cows, and 10/12 E2P4-treated cows (P&lt;0.01). Although the interval from treatment to wave emergence did not differ among treatments (P=0.8; overall, 3.4±1.5 days), follicular wave emergence was more synchronous (P&lt;0.004) in the E2 group than in the Control or E2P4 groups. At CIDR removal, dominant follicle diameter was larger (P&lt;0.02) in the Control group (15.9±5.5mm) than in the E2 (11.9±1.8mm) or E2P4 (11.5±3.4mm)groups, but dominant follicle diameter was less variable (P&lt;0.003) in the E2 group than in the other two groups. Three cows did not ovulate after CIDR removal; two in the Control group and one in the E2P4 group. Interval to ovulation was shorter (P&lt;0.05) in the Control group (70.8±10.5h)than in the E2 (87.0±9.0h) or E2P4 (86.2±7.2h) groups, and the intervals to ovulation in cows that ovulated following treatment (91.0±8.0h) was longer (P&lt;0.001) than in those that did not (76.6±9.6h). In summary, treatment of cows with an estradiol-progesterone protocol late in the estrous cycle resulted in ovulation (50.0%), atresia (33.3%) or persistence (16.6%) of the dominant follicle present at that time. As length of follicular dominance and timing of ovulation were affected, fertility may be impaired following AI.


2010 ◽  
Vol 22 (1) ◽  
pp. 366
Author(s):  
J. P. Soler ◽  
N. Mucci

Inconsistency of the superovulatory responses of donor hinds has been a general feature of all red deer MOET programs (Asher GW et al. 2000 Anim. Reprod. Sci. 59, 61-70). The development of the techniques has been by trial and error as there is usually a lack of basic information on which to base MOET protocols (Fennessy PF et al. 1994 Theriogenology 41, 133-138). The objective of this study was to understand follicle development during a superovulatory treatment in order to improve ovulation rates and quantity of transferable embryos produced. During the breeding season, 10 mature (3-5 years old) red deer hinds were synchronized receiving an intravaginal sponge containing 100 mg of medroxiprogesterone acetate for 13 days, with device replacement on Day 11. Four days prior to the beginning of the FSH treatment, 0.5 mg of estradiol benzoate (Syntex SA, Buenos Aires, Argentina) was given i.m. to synchronize the follicular wave. Superovulation was conducted with a total dose of 120 mg of NIH-FSH-P1 (Folltropin®-V, Bioniche Animal Health, Belleville, Ontario, Canada) given i.m. in 4 equal doses of 30 mg every 24 h, from Day 11 to 14. Forty-eight hours after sponge withdrawal, 0.84 mg of buserelin acetate (Receptal®, Intervet, Boxmeer, the Netherlands) was injected i.m. to stimulate and synchronize ovulations. Ovarian scanning was performed by transrectal ultrasonography using a multifrequency linear transducer (Tringa Linear, Esaote Pie Medical, Genoa, Italy) on Days -1, 0, 1, 2, 3, 4, 5, and 6, Day 0 being the day of sponge withdrawal. The diameters of all follicles ≥3 mm were measured and their 3-dimensional position recorded to determine growth and ovulation. The average ovulation rate was 10.8 ± 1.6. The distribution of ovulations was 9.3, 31.5, 24.1, 22.2, 9.2, and 3.7% at 24, 48, 72, 96, 120, and 144 h after sponge withdrawal, respectively. The proportion of follicles that did not ovulate during the period of this study was 16.9%. The proportion of ovulated follicles according to their diameter was 9.3, 68.5, and 22.2% for 3 mm, 4 to 5 mm, and ≥6 mm, respectively, and were during the 24- to 96-h period for the first 2 follicles categories and after 96 h for the last category. This study showed a great variability of ovulations in the superovulatory protocols routinely used in red deer donor hinds. Improvement of the hormone treatment to induce a greater degree of ovulation synchrony (within 72 h after progesterone device withdrawal) would increase the fertilization rates and the quantity of transferable embryos produced in red deer MOET programs. Table 1.Mean (±SEM) ovulation rate and number of follicles recorded at each ultrasonography day before and after sponge withdrawal


2020 ◽  
Vol 32 (2) ◽  
pp. 131
Author(s):  
R. H. Alvarez ◽  
B. M. Bayeux ◽  
Y. F. Watanabe ◽  
D. A. Joaquim ◽  
K. M. R. Duarte ◽  
...  

Fertility associated with age has been poorly documented in cattle. There is evidence that more than 50% of cows became infertile (failure to bear a calf for two successive years) at the age of 15. The causes of infertility in cows have been attributed to poor oocyte quality and/or follicle depletion. The present study aimed to compare the rates of oocyte and invitro embryo production of fertile cows older than 15 years. Sixteen Nellore cows (Bos taurus indicus) 200.3±4.9 months old were submitted to two ovum pickup series (OPU1 and OPU2) at a 2-year (2017 and 2019) interval. Before the OPU1 of each series, the cows were prepared with an IM injection of 2mg estradiol benzoate and 0.15mg prostaglandin F2α analogue and a progesterone-releasing intravaginal device (1g). After five days, the progesterone-releasing intravaginal device was withdrawn and the OPU1 was performed. The second OPU (OPU2) was performed 5 days later to aspirate only the growing follicles. The number and morphologic quality of recovered cumulus-oocyte complexes were registered. After IVM (tissue culture medium 199) and fertilization (Tyrode's solution) of cumulus-oocyte complexes, the presumptive zygotes were cultured in synthetic oviductal fluid with amino acids to assess developmental rates to blastocyst. Data were analysed by chi-squared and Wilcoxon test. The number of oocytes recovered at OPU1 was higher in 2107 than in 2019 (27.8±6.6 vs. 10.8±4.2; P&lt;0.01), whereas in OPU2 the production of oocytes was not different (14.7±3.3 vs. 10.9±3.1). In OPU1, eight cows in 2017 and four in 2019 produced more than 20 oocytes, compared with only one cow in OPU2 of both years (P=0.02). Although there was no significant difference in the proportion of viable oocytes in OPU1 (83.6% and 87.2%) and OPU2 (85.5 and 68.0%), more viable oocytes were produced at OPU1 of 2017 (23.2±5.8) compared with OPU1 of 2019 (9.4±4.1), OPU2 of 2017 (12.6±2.7) and OPU2 of 2019 (7.4±2.4), respectively (P&lt;0.05). There was no significant difference in the proportion of cleaved oocytes in OPU1 (74.2 and 75.1%) and OPU2 (68.9 and 79.8%). Two cows in 2017 (12.5%) and five in 2019 (31.2%) did not produce embryos in both OPUs. Cows produced more embryos (blastocysts) in OPU1 at 2017 (7.3±1.6) than 2019 (2.8±0.6; P&lt;0.05), whereas in OPU2 there was no difference (4.1±0.8 and 3.1±0.8). In conclusion, senescent fertile cows decreases the number of oocytes and embryos as they approach 20 years of age; however, the quality of oocytes does not appear to be compromised. Financial support was provided by FAPESP (proc. 2018/07450-5).


Author(s):  
Camila Cupper Vieira ◽  
Hirya Fernandes Pinto ◽  
Vanessa Buss ◽  
Bruno Gonzalez de Freitas ◽  
Bruna Martins Guerreiro ◽  
...  

2005 ◽  
Vol 17 (2) ◽  
pp. 160
Author(s):  
M. Martínez ◽  
M. Caccia ◽  
M. Colazo ◽  
G. Bó ◽  
J. Kastelic ◽  
...  

Estradiol and progesterone have been used to synchronize follicular wave emergence and ovulation in a two-dose prostaglandin (PGF)-based synchronization program (Martínez et al. 2004 Theriogenology 62, 363–372). However, it was observed that some heifers displayed estrus prior to the second PGF, suggesting that premature luteolysis may have occurred. An experiment was designed to determine the effects of dose of estradiol benzoate (EB) and/or progesterone (P) on follicular and luteal dynamics in a two dose PGF-based protocol in beef heifers. In two replicates, beef heifers (n = 28; Simmental, Hereford, and Charolais crosses, 350 to 450 kg) received 500 μg cloprostenol (Schering-Plough Animal Health, Pointe-Claire, PQ, Canada) on Day −7. On Day 0, heifers were randomly allocated to nine treatment groups to receive 0, 1, or 2 mg of EB and 0, 50, or 100 mg of P i.m. in canola oil in a 3 × 3 factorial design. A second PGF treatment was administered on Day 14. Ultrasonography was done once daily from Days −5 to 9, and every 12 h thereafter until ovulation. Blood samples were collected at 12-hour intervals from Day 0 to 5 for estradiol and FSH concentrations, and every 24 h for progesterone. The effects of EB and P and their interaction on corpus luteum (CL), follicles, and hormone profiles were analyzed by analysis of variance, and means were compared by LSD or Tukey's test. All variables were normally distributed (Wilk-Shapiro test and rankit plots). The day of follicular wave at the time of treatment tended to vary among groups (P = 0.08) and the diameter of the dominant follicle also differed (P < 0.05). The interval from treatment to wave emergence was shorter (P < 0.05) in heifers that received 2 mg EB (4.6 ± 0.3 d) than in those that did not receive EB (5.9 ± 0.6 d), while the 1 mg EB group (5.1 ± 0.6 d) was intermediate. The interval to wave emergence in the 2 mg EB group was the least variable (P < 0.05). There was no effect of EB (P = 0.72) on the diameter of the CL at the time of the second PGF, but there was an effect of P treatment (P = 0.01). The variability of the interval from the second PGF to ovulation may have been influenced by treatment group but was statistically not significant (P < 0.1). There was an effect of time (P < 0.01) on plasma progesterone concentrations and a P × time interaction (P = 0.06) can also be assumed. Estradiol concentrations were affected by EB dose, time, and EB × time interaction (all P < 0.01). FSH concentrations were modified by time (P < 0.01). In summary, treatment with EB 7 days after a single injection of PGF affected follicular development, while P treatment at that time appeared to influence CL function.


Sign in / Sign up

Export Citation Format

Share Document